Almost complete revivals in quantum many-body systems
- URL: http://arxiv.org/abs/2011.02848v3
- Date: Tue, 20 Apr 2021 20:12:04 GMT
- Title: Almost complete revivals in quantum many-body systems
- Authors: Igor Ermakov, Boris V. Fine
- Abstract summary: We show how to construct a quantum state such that a given spin 1/2 is maximally polarized initially and then exhibits an almost complete recovery of the initial polarization at a predetermined moment of time.
An experimental observation of such revivals may be utilized to benchmark quantum simulators with a measurement of only one local observable.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Revivals of initial non-equilibrium states is an ever-present concern for the
theory of dynamic thermalization in many-body quantum systems. Here we consider
a nonintegrable lattice of interacting spins 1/2 and show how to construct a
quantum state such that a given spin 1/2 is maximally polarized initially and
then exhibits an almost complete recovery of the initial polarization at a
predetermined moment of time. An experimental observation of such revivals may
be utilized to benchmark quantum simulators with a measurement of only one
local observable. We further propose to utilize these revivals for a delayed
disclosure of a secret.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum correlations in the steady state of light-emitter ensembles from
perturbation theory [0.0]
In systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit exhibits spin squeezing.
Our main result is that in systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit generically exhibits spin squeezing.
arXiv Detail & Related papers (2024-02-26T18:50:30Z) - Thermodynamic phases in first detected return times of quantum many-body systems [0.0]
We study the probability distribution of the first return time to the initial state of a quantum many-body system.
We show that this distribution can be interpreted as a continuation of the canonical partition function of a spin chain with non-interacting domains at equilibrium.
arXiv Detail & Related papers (2023-11-09T18:47:07Z) - Accelerating relaxation in Markovian open quantum systems through
quantum reset processes [0.0]
We claim that using quantum reset, a common and important operation in quantum timescales, is able to be accelerated significantly.
This faster relaxation induced by the reset protocol is reminiscent of the quantum Mpemba effect.
Our new strategy to accelerate relaxations may also be applied to closed quantum systems or even some non-Markovian open quantum systems.
arXiv Detail & Related papers (2022-12-21T16:31:27Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Universal scaling at a pre-thermal dark state [0.0]
We discuss the universal dynamical scaling after a sudden quench of the non-Hermitian $O(N)$ model Hamiltonian.
While universality is generally spoiled by non-Hermiticity, we find that for a given set of internal parameters short-time scaling behaviour is restored with an initial slip profoundly different from that of closed quantum systems.
arXiv Detail & Related papers (2021-12-28T15:11:45Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.