論文の概要: A new framework for Marketing Mix Modeling: Addressing Channel Influence Bias and Cross-Channel Effects
- arxiv url: http://arxiv.org/abs/2311.05587v6
- Date: Sun, 16 Mar 2025 10:01:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:57:07.976435
- Title: A new framework for Marketing Mix Modeling: Addressing Channel Influence Bias and Cross-Channel Effects
- Title(参考訳): 混合モデリングのための新しいフレームワーク:チャネル影響バイアスとチャネル間効果に対処する
- Authors: Javier Marin,
- Abstract要約: 本研究はマーケティングミックスモデリングにおける2つの基本的な課題に対処する: モデルが高投資チャネルに過度に寄与する傾向と、チャネル間効果の定量化の難しさである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This research addresses two fundamental challenges in Marketing Mix Modeling: the tendency of models to over-attribute influence to high-investment channels and the difficulty in quantifying cross-channel effects. We propose integrating the Michaelis-Menten equation and Maxwell-Boltzmann kinetic theory into hierarchical Bayesian models to overcome these limitations. Our approach uses the Michaelis-Menten model to characterize shape effects with spending-independent parameters and Boltzmann-type equations to systematically quantify cross-channel dynamics. Experimental results show that this physics-inspired approach maintains predictive accuracy while providing superior analytical insights into channel effectiveness and interactions. The normalized Michaelis-Menten constant offers an investment-independent measure of channel efficacy, while the N-particle system simulation reveals previously ignored channel interdependencies, enabling more accurate attribution and informed resource allocation decisions.
- Abstract(参考訳): 本研究はマーケティングミックスモデリングにおける2つの基本的な課題に対処する: モデルが高投資チャネルに過度に寄与する傾向と、チャネル間効果の定量化の難しさである。
我々は、ミハイル・メンテン方程式とマクスウェル・ボルツマン運動論を階層的ベイズモデルに統合し、これらの制限を克服することを提案する。
提案手法はミヒャエル・メンテンモデルを用いて,消費非依存パラメータによる形状効果とボルツマン型方程式を用いて,クロスチャネル力学の体系的定量化を行う。
実験結果から、この物理にインスパイアされたアプローチは予測精度を維持しつつ、チャネルの有効性と相互作用に関する優れた分析的な洞察を提供することが示された。
正規化Michaelis-Menten定数は、チャネル有効性の投資非依存の尺度を提供する一方、N粒子系シミュレーションは、これまで無視されていたチャネル相互依存性を明らかにし、より正確な帰属と情報資源割り当ての決定を可能にする。
関連論文リスト
- Finding the Underlying Viscoelastic Constitutive Equation via Universal Differential Equations and Differentiable Physics [1.03121181235382]
本研究は、微分物理学と粘弾性流体を併用した普遍微分方程式(UDE)を用いる。
本研究は, 上対流マックスウェル (UCM) , ジョンソン・セガルマン (Johnson-Segalman) , ギーゼクス (Giesekus) および指数パン・テン・タンナー (Exponential Phan-Thien-Tanner, ePTT) の4つの粘弾性モデルの解析に焦点をあてる。
論文 参考訳(メタデータ) (2024-12-31T17:34:29Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体としてモデル化し、理想化された仮定なしに現実的な変形を考慮に入れた。
ガウシムは質量や運動量保存などの明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Combining physics-based and data-driven techniques for reliable hybrid
analysis and modeling using the corrective source term approach [0.0]
デジタル双生児、自律型、人工知能システムは正確で解釈可能で、計算効率が高く、一般化可能なモデルを必要とする。
物理に基づくモデリングとデータ駆動モデリングを組み合わせたハイブリッドアプローチが、両方のモデルを上回る結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-06-07T17:10:58Z) - Learning Deep Implicit Fourier Neural Operators (IFNOs) with
Applications to Heterogeneous Material Modeling [3.9181541460605116]
本稿では,従来のモデルを用いることなく,データ駆動モデルを用いて素材の応答を予測することを提案する。
材料応答は、負荷条件と結果の変位および/または損傷場の暗黙のマッピングを学習することによってモデル化される。
本稿では,超弾性材料,異方性材料,脆性材料など,いくつかの例について提案手法の性能を実証する。
論文 参考訳(メタデータ) (2022-03-15T19:08:13Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Hybrid modeling of the human cardiovascular system using NeuralFMUs [0.0]
ハイブリッドなモデリングプロセスは、より快適で、システム知識を必要とせず、第一原理に基づくモデリングに比べてエラーの少ないことが示される。
結果として得られたハイブリッドモデルは、純粋な第一原理のホワイトボックスモデルに比べて計算性能が向上した。
考慮されたユースケースは、医療領域内外における他のモデリングおよびシミュレーションアプリケーションの例として機能する。
論文 参考訳(メタデータ) (2021-09-10T13:48:43Z) - Integrating Electrochemical Modeling with Machine Learning for
Lithium-Ion Batteries [0.0]
本稿では,リチウムイオン電池(LiB)の高精度モデリングを実現するために,物理モデルと機械学習を統合する新しい手法を提案する。
本稿では,1粒子モデルと熱力学(SPMT)をフィードフォワードニューラルネットワーク(FNN)とを混合して,LiBの動的挙動の物理インフォームド学習を行うアプローチに基づく2つのハイブリッド物理機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-03-22T04:53:38Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。