論文の概要: Explainable artificial intelligence for Healthcare applications using
Random Forest Classifier with LIME and SHAP
- arxiv url: http://arxiv.org/abs/2311.05665v1
- Date: Thu, 9 Nov 2023 11:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 17:00:59.640282
- Title: Explainable artificial intelligence for Healthcare applications using
Random Forest Classifier with LIME and SHAP
- Title(参考訳): LIMEとSHAPを用いたランダムフォレスト分類器を用いた医療応用のための説明可能な人工知能
- Authors: Mrutyunjaya Panda, Soumya Ranjan Mahanta
- Abstract要約: ブラックボックスAI技術に隠された計算の詳細を理解する必要がある。
説明可能なAI(xAI)の起源は、これらの課題から生まれる。
この本は、いくつかのxAIフレームワークとメソッドの詳細な分析を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advances in computationally efficient artificial Intelligence (AI)
techniques and their numerous applications in our everyday life, there is a
pressing need to understand the computational details hidden in black box AI
techniques such as most popular machine learning and deep learning techniques;
through more detailed explanations. The origin of explainable AI (xAI) is
coined from these challenges and recently gained more attention by the
researchers by adding explainability comprehensively in traditional AI systems.
This leads to develop an appropriate framework for successful applications of
xAI in real life scenarios with respect to innovations, risk mitigation,
ethical issues and logical values to the users. In this book chapter, an
in-depth analysis of several xAI frameworks and methods including LIME (Local
Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive
exPlanations) are provided. Random Forest Classifier as black box AI is used on
a publicly available Diabetes symptoms dataset with LIME and SHAP for better
interpretations. The results obtained are interesting in terms of transparency,
valid and trustworthiness in diabetes disease prediction.
- Abstract(参考訳): 計算効率の良い人工知能(AI)技術の進歩と、私たちの日常生活における多くの応用により、最も一般的な機械学習やディープラーニング技術のようなブラックボックスAI技術に隠された計算の詳細を理解する必要がある。
説明可能なAI(xAI)の起源はこれらの課題から生まれ、研究者たちは近年、従来のAIシステムに包括的な説明可能性を追加することで、より多くの注目を集めている。
これにより、イノベーション、リスク緩和、倫理的問題、およびユーザへの論理的価値に関して、実生活シナリオでxaiをうまく活用するための適切なフレームワークが開発される。
本章では、LIME(Local Interpretable Model-Agnostic Explanations)やSHAP(SHapley Additive ExPlanations)など、いくつかのxAIフレームワークとメソッドの詳細な分析を行っている。
ブラックボックスAIとしてのランダムフォレスト分類器は、LIMEとSHAPで公開されている糖尿病症状データセットで、より良い解釈のために使用される。
その結果,糖尿病予測における透明性,妥当性,信頼性の点で興味深い結果を得た。
関連論文リスト
- Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
この文脈でeXplainable AI(XAI)ツールとテクニックをレビューする。
私たちは、AI決定を透明にする彼らの役割、特に人間が関与する重要なシナリオに重点を置いています。
モデル性能と説明可能性のバランスをとることを目的とした,現在の限界と今後の研究について論じる。
論文 参考訳(メタデータ) (2024-04-17T17:49:38Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
我々はカスタムXAIフレームワークを活用し、LIME(Local Interpretable Model-Agnostic Explanations)、SHAP(SHapley Additive ExPlanations)、Grad-Cam(Grad-weighted Class Activation Mapping)といったテクニックを取り入れた。
提案手法は, 戦略的医療手法の有効性を高め, 信頼度を高め, 医療応用の理解を促進することを目的としている。
我々はXAIフレームワークを脳腫瘍検出に応用し,正確かつ透明な診断方法を示した。
論文 参考訳(メタデータ) (2024-03-07T01:08:41Z) - ChatGPT-HealthPrompt. Harnessing the Power of XAI in Prompt-Based
Healthcare Decision Support using ChatGPT [15.973406739758856]
本研究は,OpenAIのChatGPTを中心に,大規模言語モデル(LLM)を臨床意思決定に適用するための革新的なアプローチを提案する。
提案手法では,タスク記述,特徴記述,ドメイン知識の統合を前提とした文脈的プロンプトの利用を提案する。
論文 参考訳(メタデータ) (2023-08-17T20:50:46Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAIは、AIアプリケーションを構築するための技術と方法を指す。
モデル説明可能性と解釈可能性は、医療実践におけるAIモデルのデプロイを成功させる上で不可欠である。
論文 参考訳(メタデータ) (2023-04-04T05:41:57Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Unbox the Black-box for the Medical Explainable AI via Multi-modal and
Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond [3.4031539425106683]
説明可能な人工知能(XAI)は、AIシステムのブラックボックスの選択方法のアンボックスを目的とした、機械学習の新たな研究トピックである。
機械学習アルゴリズムの多くは、意思決定の方法と理由を明らかにしない。
XAIは、ディープラーニングを利用したアプリケーション、特に医学や医療研究において、ますます重要になっている。
論文 参考訳(メタデータ) (2021-02-03T10:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。