論文の概要: Machine Learning-powered Compact Modeling of Stochastic Electronic
Devices using Mixture Density Networks
- arxiv url: http://arxiv.org/abs/2311.05820v1
- Date: Fri, 10 Nov 2023 01:34:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 16:08:57.629612
- Title: Machine Learning-powered Compact Modeling of Stochastic Electronic
Devices using Mixture Density Networks
- Title(参考訳): 混合密度ネットワークを用いた確率電子機器の機械学習によるコンパクトモデリング
- Authors: Jack Hutchins, Shamiul Alam, Dana S. Rampini, Bakhrom G. Oripov, Adam
N. McCaughan, Ahmedullah Aziz
- Abstract要約: 従来の決定論的モデルは、多くの電子部品によって示される微妙だが批判的な変動を捉えようとすると、不足する。
本稿では,機械学習の力を生かして,従来のモデリング手法の限界を超越する革新的な手法を提案する。
本論文は,電子回路の領域における革新を推し進める,正確で汎用的なコンパクトモデルの探求において,重要な一歩を踏み出したものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The relentless pursuit of miniaturization and performance enhancement in
electronic devices has led to a fundamental challenge in the field of circuit
design and simulation: how to accurately account for the inherent stochastic
nature of certain devices. While conventional deterministic models have served
as indispensable tools for circuit designers, they fall short when it comes to
capture the subtle yet critical variability exhibited by many electronic
components. In this paper, we present an innovative approach that transcends
the limitations of traditional modeling techniques by harnessing the power of
machine learning, specifically Mixture Density Networks (MDNs), to faithfully
represent and simulate the stochastic behavior of electronic devices. We
demonstrate our approach to model heater cryotrons, where the model is able to
capture the stochastic switching dynamics observed in the experiment. Our model
shows 0.82% mean absolute error for switching probability. This paper marks a
significant step forward in the quest for accurate and versatile compact
models, poised to drive innovation in the realm of electronic circuits.
- Abstract(参考訳): 電子機器の小型化と性能向上の無関係な追求は、回路設計とシミュレーションの分野における根本的な課題につながった。
従来の決定論的モデルは回路設計者にとって欠かせないツールとして機能してきたが、多くの電子部品が示す微妙で重要な変動を捉えるには不足している。
本稿では,機械学習,特に混合密度ネットワーク(MDN)の力を利用して,電子機器の確率的挙動を忠実に表現し,シミュレートすることで,従来のモデリング手法の限界を超越する革新的なアプローチを提案する。
我々は,実験で観測された確率的スイッチングダイナミクスをモデルとして,熱源クライオトロンをモデル化するアプローチを実証する。
本モデルはスイッチング確率の絶対誤差が0.82%であることを示す。
本稿では,電子回路の領域における革新を推し進めるための,正確で汎用的なコンパクトモデルの探求において重要な一歩を踏み出した。
関連論文リスト
- Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
我々は、モデル統合ニューラルネットワーク(MINN)を生成するための新しいアーキテクチャを提案する。
MINNは、システムの物理に基づく力学の学習レベルとの統合を可能にする。
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
本研究はトランスフォーマーモデルにおける高効率事前学習目標について検討する。
マスクトークンの除去と損失時のアウトプット全体の考慮が,パフォーマンス向上に不可欠な選択であることを証明する。
論文 参考訳(メタデータ) (2021-04-20T00:09:37Z) - Integrating Electrochemical Modeling with Machine Learning for
Lithium-Ion Batteries [0.0]
本稿では,リチウムイオン電池(LiB)の高精度モデリングを実現するために,物理モデルと機械学習を統合する新しい手法を提案する。
本稿では,1粒子モデルと熱力学(SPMT)をフィードフォワードニューラルネットワーク(FNN)とを混合して,LiBの動的挙動の物理インフォームド学習を行うアプローチに基づく2つのハイブリッド物理機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-03-22T04:53:38Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z) - Development, Demonstration, and Validation of Data-driven Compact Diode
Models for Circuit Simulation and Analysis [0.0]
機械学習技術は、コンパクトモデルの開発を自動化し、大幅に高速化する可能性がある。
MLは、特定の回路ステージに合わせて調整されたコンパクトモデルの階層を開発するために使用できる様々なモデリングオプションを提供する。
これらの「データ駆動型」コンパクトモデルの性能を,(1)実験室データと電圧電流特性を比較し,(2)これらの装置を用いたブリッジ回路の構築により評価した。
論文 参考訳(メタデータ) (2020-01-06T18:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。