論文の概要: Multiscale Neural Operators for Solving Time-Independent PDEs
- arxiv url: http://arxiv.org/abs/2311.05964v1
- Date: Fri, 10 Nov 2023 10:02:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 15:32:56.800545
- Title: Multiscale Neural Operators for Solving Time-Independent PDEs
- Title(参考訳): 時間非依存pdes解のためのマルチスケールニューラル演算子
- Authors: Winfried Ripken, Lisa Coiffard, Felix Pieper, Sebastian Dziadzio
- Abstract要約: 大規模メッシュ上の時間非依存部分微分方程式(PDE)は、データ駆動型ニューラルネットワークPDEソルバに重大な課題をもたらす。
本稿では,これらの課題に対処するための新しいグラフ再構成手法を提案する。
提案手法は,遠隔ノードをブリッジし,GNNのグローバルなインタラクション能力を向上する。
- 参考スコア(独自算出の注目度): 1.0923877073891446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-independent Partial Differential Equations (PDEs) on large meshes pose
significant challenges for data-driven neural PDE solvers. We introduce a novel
graph rewiring technique to tackle some of these challenges, such as
aggregating information across scales and on irregular meshes. Our proposed
approach bridges distant nodes, enhancing the global interaction capabilities
of GNNs. Our experiments on three datasets reveal that GNN-based methods set
new performance standards for time-independent PDEs on irregular meshes.
Finally, we show that our graph rewiring strategy boosts the performance of
baseline methods, achieving state-of-the-art results in one of the tasks.
- Abstract(参考訳): 大規模メッシュ上の時間非依存部分微分方程式(PDE)は、データ駆動型ニューラルネットワークPDEソルバに重大な課題をもたらす。
本稿では,新しいグラフリワイリング手法を導入して,スケールや不規則なメッシュ上の情報を集約するなど,これらの課題に挑戦する。
提案手法は,遠隔ノードをブリッジし,GNNのグローバルなインタラクション能力を向上する。
3つのデータセットに対する実験により、GNNベースの手法が不規則メッシュ上での時間非依存PDEの性能基準を新たに設定していることが判明した。
最後に,我々のグラフリウィリング戦略がベースライン手法の性能を向上し,タスクの1つで最先端の結果が得られることを示す。
関連論文リスト
- Latent Neural Operator Pretraining for Solving Time-Dependent PDEs [5.8039987932401225]
本稿では,LNO(Latent Neural Operator Pretraining)をベースとしたLNOP(Latent Neural Operator Pretraining)フレームワークを提案する。
提案するLNOPフレームワークは, 4つの問題に対して解の誤差を31.7%削減し, 微調整後の57.1%まで改善することができる。
これらの結果から,本手法は非制約のニューラル演算子に比べて解の精度,転送能力,データ効率の面で競争力が高いことがわかった。
論文 参考訳(メタデータ) (2024-10-26T06:57:22Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting [0.16492989697868887]
本稿では,相互依存を示すエッジを持つグラフにおいて,多変量信号をノードとして表現する方法を提案する。
我々はグラフニューラルネットワーク(GNN)とアテンションメカニズムを活用し、時系列データ内の基礎となる関係を効率的に学習する。
提案モデルの有効性を,長期予測タスク用に設計された実世界のベンチマークデータセットで評価した。
論文 参考訳(メタデータ) (2023-11-21T14:24:21Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
グラフニューラルネットワーク(GNN)は、様々なアプリケーションで例外的な効果を発揮している。
大規模グラフの重大化は,GNNによるリアルタイム推論において重要な課題となる。
本稿では,オンライン伝搬フレームワークと2つの新しいノード適応伝搬手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T05:03:00Z) - GNRK: Graph Neural Runge-Kutta method for solving partial differential
equations [0.0]
本研究はグラフニューラルランゲ・クッタ(GNRK)と呼ばれる新しいアプローチを紹介する。
GNRKはグラフニューラルネットワークモジュールを古典的解法にインスパイアされた再帰構造に統合する。
これは、初期条件やPDE係数に関係なく、一般的なPDEに対処する能力を示す。
論文 参考訳(メタデータ) (2023-10-01T08:52:46Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - Learning time-dependent PDE solver using Message Passing Graph Neural
Networks [0.0]
本稿では,メッセージパッシングモデルを用いた学習を通して,効率的なPDE解法を見つけるためのグラフニューラルネットワーク手法を提案する。
グラフを用いて、非構造化メッシュ上でPDEデータを表現し、メッセージパッシンググラフニューラルネットワーク(MPGNN)が支配方程式をパラメータ化できることを示す。
繰り返しグラフニューラルネットワークは,PDEに対する解の時間列を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-04-15T21:10:32Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Adversarial Multi-task Learning Enhanced Physics-informed Neural
Networks for Solving Partial Differential Equations [9.823102211212582]
本稿では,多タスク学習手法,不確実性強調損失,勾配手術を学習pdeソリューションの文脈で活用する新しいアプローチを提案する。
実験では,提案手法が有効であることが判明し,従来手法と比較して未発見のデータポイントの誤差を低減できた。
論文 参考訳(メタデータ) (2021-04-29T13:17:46Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。