論文の概要: Learning time-dependent PDE solver using Message Passing Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2204.07651v1
- Date: Fri, 15 Apr 2022 21:10:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-21 04:39:28.049153
- Title: Learning time-dependent PDE solver using Message Passing Graph Neural
Networks
- Title(参考訳): メッセージパッシンググラフニューラルネットワークを用いた時間依存型PDEソルバの学習
- Authors: Pourya Pilva and Ahmad Zareei
- Abstract要約: 本稿では,メッセージパッシングモデルを用いた学習を通して,効率的なPDE解法を見つけるためのグラフニューラルネットワーク手法を提案する。
グラフを用いて、非構造化メッシュ上でPDEデータを表現し、メッセージパッシンググラフニューラルネットワーク(MPGNN)が支配方程式をパラメータ化できることを示す。
繰り返しグラフニューラルネットワークは,PDEに対する解の時間列を見つけることができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the main challenges in solving time-dependent partial differential
equations is to develop computationally efficient solvers that are accurate and
stable. Here, we introduce a graph neural network approach to finding efficient
PDE solvers through learning using message-passing models. We first introduce
domain invariant features for PDE-data inspired by classical PDE solvers for an
efficient physical representation. Next, we use graphs to represent PDE-data on
an unstructured mesh and show that message passing graph neural networks
(MPGNN) can parameterize governing equations, and as a result, efficiently
learn accurate solver schemes for linear/nonlinear PDEs. We further show that
the solvers are independent of the initial trained geometry, i.e. the trained
solver can find PDE solution on different complex domains. Lastly, we show that
a recurrent graph neural network approach can find a temporal sequence of
solutions to a PDE.
- Abstract(参考訳): 時間依存偏微分方程式を解く主な課題の1つは、正確で安定な計算効率の良い解法を開発することである。
本稿では,メッセージパスモデルを用いた学習を通して,効率的なPDE解法を見つけるためのグラフニューラルネットワーク手法を提案する。
まず,従来のPDEソルバにインスパイアされたPDEデータに対して,効率的な物理表現のためのドメイン不変機能を導入する。
次に,非構造化メッシュ上でのpdeデータの表現にグラフを用い,メッセージパッシンググラフニューラルネットワーク(mpgnn)が制御方程式をパラメータ化できることを示し,線形/非線形pdesの高精度解法を効率的に学習する。
さらに, 初期学習された幾何とは独立な解法を示し, 学習した解法では異なる複素領域上のpde解を求めることができることを示した。
最後に,リカレントグラフニューラルネットワークアプローチは,pdeに対する解の時系列を見出すことができることを示す。
関連論文リスト
- Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Meta-learning of Physics-informed Neural Networks for Efficiently
Solving Newly Given PDEs [33.072056425485115]
本稿では、偏微分方程式(PDE)問題を効率的に解くニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は多種多様なPDE問題の解法をメタラーニングし,その知識を新たに与えられたPDE問題の解法に用いる。
提案手法は,PDE問題の解を予測する上で,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-20T04:35:59Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh [24.572840023107574]
偏微分方程式(PDE)は、しばしば計算的に解くのが難しい。
本稿では,関連するPDEの分布から,問題の迅速な解法を学習するメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T06:17:52Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - NeuralPDE: Modelling Dynamical Systems from Data [0.44259821861543996]
本稿では、畳み込みニューラルネットワーク(CNN)と微分可能なODEソルバを組み合わせて動的システムをモデル化するモデルであるNeuralPDEを提案する。
標準PDEソルバで使用されるラインの手法は、CNNが任意のPDEダイナミクスをパラメトリズする自然な選択となる畳み込みを用いて表現できることを示す。
我々のモデルは、PDEの管理に関する事前の知識を必要とせずに、あらゆるデータに適用することができる。
論文 参考訳(メタデータ) (2021-11-15T10:59:52Z) - GrADE: A graph based data-driven solver for time-dependent nonlinear
partial differential equations [0.0]
本稿では,時間依存非線形PDEを解くためのグラフ注意微分方程式(GrADE)を提案する。
提案するアプローチは、FNN、グラフニューラルネットワークと、最近開発されたNeural ODEフレームワークを結合する。
その結果、PDEのモデリングにおける提案フレームワークの能力と、再トレーニングを必要とせず、より大きなドメインへの拡張性を示した。
論文 参考訳(メタデータ) (2021-08-24T10:49:03Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。