論文の概要: Consistency for constrained maximum likelihood estimation and clustering based on mixtures of elliptically-symmetric distributions under general data generating processes
- arxiv url: http://arxiv.org/abs/2311.06108v5
- Date: Thu, 10 Oct 2024 23:07:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-14 13:28:16.561352
- Title: Consistency for constrained maximum likelihood estimation and clustering based on mixtures of elliptically-symmetric distributions under general data generating processes
- Title(参考訳): 一般データ生成過程における楕円対称分布の混合に基づく制約付き最大推定とクラスタリングの整合性
- Authors: Pietro Coretto, Christian Hennig,
- Abstract要約: P$ が十分に分離されているが非パラメトリック分布の混合である場合、推定器の集団バージョンの成分は、よく分離された$P$ の成分に対応することが示される。
このことは、もしこれらのサブポピュレーションが混合モデルが仮定したものと異なるとしても、$P$が十分に分離されたサブポピュレーションを持つ場合のクラスタ分析にそのような推定子を使用するための理論的正当化を与える。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.
- Abstract(参考訳): 集団バージョンを推定するための楕円対称分布の混合物に対する最大極大推定器の整合性を示し、基礎となる分布$P$は非パラメトリックであり、その推定器が基底となる混合物のクラスに必ずしも属さない。
P$ が十分に分離されているが非パラメトリック分布の混合である場合、推定器の集団バージョンの成分は、よく分離された$P$ の成分に対応することが示される。
このことは、もしこれらのサブポピュレーションが混合モデルが仮定したものと異なるとしても、$P$が十分に分離されたサブポピュレーションを持つ場合のクラスタ分析にそのような推定子を使用するための理論的正当化を与える。
関連論文リスト
- Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Sparse PCA with Oracle Property [115.72363972222622]
新規な正規化を伴うスパースPCAの半定緩和に基づく推定器群を提案する。
我々は、家族内の別の推定器が、スパースPCAの標準半定緩和よりも、より急激な収束率を達成することを証明した。
論文 参考訳(メタデータ) (2023-12-28T02:52:54Z) - Clustering Mixtures of Bounded Covariance Distributions Under Optimal
Separation [44.25945344950543]
境界共分散分布の混合に対するクラスタリング問題について検討する。
このクラスタリングタスクに対して,最初のポリ時間アルゴリズムを提案する。
我々のアルゴリズムは、対数外乱の$Omega(alpha)$-fractionに対して堅牢である。
論文 参考訳(メタデータ) (2023-12-19T01:01:53Z) - Joint Probability Estimation Using Tensor Decomposition and Dictionaries [3.4720326275851994]
本研究では, 与えられた離散確率と連続確率変数の連立確率の非パラメトリック推定を, それらの(経験的推定)2次元境界値から検討した。
我々は、データを調べて分布の様々なファミリーの辞書を作成し、それを混合した製品の各分解因子を近似するために利用する。
論文 参考訳(メタデータ) (2022-03-03T11:55:51Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
本稿では、ノイズや非ガウス的なデータに対するデータ計算の欠如に対処する。
楕円分布と潜在的な欠落データを扱う特性を混合した新しいEMアルゴリズムについて検討した。
合成データの実験的結果は,提案アルゴリズムが外れ値に対して頑健であり,非ガウスデータで使用可能であることを示す。
論文 参考訳(メタデータ) (2022-01-28T10:01:37Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
バイナリ密度比推定(DRE)は多くの最先端の機械学習アルゴリズムの基礎を提供する。
ブレグマン最小化の発散の観点から一般的な枠組みを開発する。
我々のフレームワークはバイナリDREでそれらのフレームワークを厳格に一般化する手法に導かれることを示す。
論文 参考訳(メタデータ) (2021-12-07T01:23:20Z) - Self-regularizing Property of Nonparametric Maximum Likelihood Estimator
in Mixture Models [39.27013036481509]
一般ガウス混合に対する非パラメトリック最大度(NPMLE)モデルを導入する。
サンプルサイズに基づくNPMLEは高い確率で$O(log n)$原子(質量点)を持つことを示す。
特に、任意の混合は、$Olog選択を持つ有限の混合から統計的に入っている。
論文 参考訳(メタデータ) (2020-08-19T03:39:13Z) - Consistent Estimation of Identifiable Nonparametric Mixture Models from
Grouped Observations [84.81435917024983]
この研究は、グループ化された観測から任意の同定可能な混合モデルを一貫して推定するアルゴリズムを提案する。
ペア化された観測のために実践的な実装が提供され、アプローチは既存の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-12T20:44:22Z) - Uniform Convergence Rates for Maximum Likelihood Estimation under
Two-Component Gaussian Mixture Models [13.769786711365104]
パラメータ推定のための最大極大推定器と最小極小境界に対する一様収束率を導出する。
混合成分の混合割合は, 既知, 固定されていると仮定するが, 混合成分の分離仮定は行わない。
論文 参考訳(メタデータ) (2020-06-01T04:13:48Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。