5G Networks and IoT Devices: Mitigating DDoS Attacks with Deep Learning
Techniques
- URL: http://arxiv.org/abs/2311.06938v1
- Date: Sun, 12 Nov 2023 19:50:49 GMT
- Title: 5G Networks and IoT Devices: Mitigating DDoS Attacks with Deep Learning
Techniques
- Authors: Reem M. Alzhrani and Mohammed A. Alliheedi
- Abstract summary: Internet of Things (IoT) devices have been accelerated dramatically in recent years.
As a result, a super-network is required to handle the massive volumes of data collected and transmitted to these devices.
Deep Learning techniques have proven their effectiveness in detecting and mitigating DDoS attacks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development and implementation of Internet of Things (IoT) devices have
been accelerated dramatically in recent years. As a result, a super-network is
required to handle the massive volumes of data collected and transmitted to
these devices. Fifth generation (5G) technology is a new, comprehensive
wireless technology that has the potential to be the primary enabling
technology for the IoT. The rapid spread of IoT devices can encounter many
security limits and concerns. As a result, new and serious security and privacy
risks have emerged. Attackers use IoT devices to launch massive attacks; one of
the most famous is the Distributed Denial of Service (DDoS) attack. Deep
Learning techniques have proven their effectiveness in detecting and mitigating
DDoS attacks. In this paper, we applied two Deep Learning algorithms
Convolutional Neural Network (CNN) and Feed Forward Neural Network (FNN) in
dataset was specifically designed for IoT devices within 5G networks. We
constructed the 5G network infrastructure using OMNeT++ with the INET and
Simu5G frameworks. The dataset encompasses both normal network traffic and DDoS
attacks. The Deep Learning algorithms, CNN and FNN, showed impressive accuracy
levels, both reaching 99%. These results underscore the potential of Deep
Learning to enhance the security of IoT devices within 5G networks.
Related papers
- A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
This paper proposes an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
Our model, based on the CICIDS 2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious.
arXiv Detail & Related papers (2024-06-18T08:42:51Z) - Penetration Testing of 5G Core Network Web Technologies [53.89039878885825]
We present the first security assessment of the 5G core from a web security perspective.
We use the STRIDE threat modeling approach to define a complete list of possible threat vectors and associated attacks.
Our analysis shows that all these cores are vulnerable to at least two of our identified attack vectors.
arXiv Detail & Related papers (2024-03-04T09:27:11Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - Dataset: Large-scale Urban IoT Activity Data for DDoS Attack Emulation [7.219077740523682]
Large-scale IoT device networks are susceptible to being hijacked and used as botnets to launch distributed denial of service (DDoS) attacks.
We present a dataset from an urban IoT deployment of 4060 nodes describing their deployment-temporal activity under benign conditions.
We also provide a synthetic DDoS attack generator that injects attack activity into the dataset based on parameters such as number of nodes attacked and duration of attack.
arXiv Detail & Related papers (2021-10-05T06:34:58Z) - Adversarial Attacks on Deep Learning Based mmWave Beam Prediction in 5G
and Beyond [46.34482158291128]
A deep neural network (DNN) can predict the beam that is best slanted to each UE by using the received signal strengths ( RSSs) from a subset of possible narrow beams.
We present an adversarial attack by generating perturbations to manipulate the over-the-air captured RSSs as the input to the DNN.
This attack reduces the IA performance significantly and fools the DNN into choosing the beams with small RSSs compared to jamming attacks with Gaussian or uniform noise.
arXiv Detail & Related papers (2021-03-25T17:25:21Z) - True-data Testbed for 5G/B5G Intelligent Network [46.09035008165811]
We build the world's first true-data testbed for 5G/B5G intelligent network (TTIN)
TTIN comprises 5G/B5G on-site experimental networks, data acquisition & data warehouse, and AI engine & network optimization.
This paper elaborates on the system architecture and module design of TTIN.
arXiv Detail & Related papers (2020-11-26T06:42:36Z) - Lightweight IoT Malware Detection Solution Using CNN Classification [2.288885651912488]
The security aspect of IoT devices is an infant field, which is why it is our focus in this paper.
We developed a system that can recognize malicious behavior of a specific IoT node on the network.
Through convolutional neural network and monitoring, we were able to provide malware detection for IoT using a central node that can be installed within the network.
arXiv Detail & Related papers (2020-10-13T10:56:33Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
Botnets are now a major source for many network attacks, such as DDoS attacks and spam.
In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically.
arXiv Detail & Related papers (2020-03-13T15:34:33Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers.
The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization's network also increases the risk of attacks.
In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network.
arXiv Detail & Related papers (2020-02-25T12:24:49Z) - IoT Network Behavioral Fingerprint Inference with Limited Network Trace
for Cyber Investigation: A Meta Learning Approach [0.0]
This research proposes the novel model construct that learns to infer the network behaviorial fingerprint of specific IoT.
Our solution would enable cyber investigator to identify specific IoT of interest while overcoming the constraints of having only limited network traces of the IoT.
arXiv Detail & Related papers (2020-01-14T10:42:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.