論文の概要: Explain-then-Translate: An Analysis on Improving Program Translation
with Self-generated Explanations
- arxiv url: http://arxiv.org/abs/2311.07070v1
- Date: Mon, 13 Nov 2023 04:28:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 15:39:24.422083
- Title: Explain-then-Translate: An Analysis on Improving Program Translation
with Self-generated Explanations
- Title(参考訳): 説明題翻訳:自己生成説明によるプログラム翻訳の改善に関する分析
- Authors: Zilu Tang, Mayank Agarwal, Alex Shypula, Bailin Wang, Derry Wijaya,
Jie Chen, Yoon Kim
- Abstract要約: 本研究は,言語モデルを用いたコード間翻訳の中間段階として,自己生成型自然言語説明の利用について検討する。
我々は,MultiPL-Eデータセットから構築した3種類の説明と19のプログラミング言語を用いて,ゼロショットの場合において特に有効であることを示す。
- 参考スコア(独自算出の注目度): 35.91051163603717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work explores the use of self-generated natural language explanations as
an intermediate step for code-to-code translation with language models. Across
three types of explanations and 19 programming languages constructed from the
MultiPL-E dataset, we find the explanations to be particularly effective in the
zero-shot case, improving performance by 12% on average. Improvements with
natural language explanations are particularly pronounced on difficult
programs. We release our dataset, code, and canonical solutions in all 19
languages.
- Abstract(参考訳): 本研究は,言語モデルを用いたコード間翻訳の中間段階として,自己生成型自然言語説明の利用について検討する。
3種類の説明と19のプログラミング言語がMultiPL-Eデータセットから構築され、ゼロショットケースでは特に有効であることが分かり、平均して12%の性能向上が見られた。
自然言語による説明の改善は、特に難しいプログラムで顕著である。
19言語すべてでデータセット、コード、標準ソリューションをリリースしています。
関連論文リスト
- Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - PLUG: Leveraging Pivot Language in Cross-Lingual Instruction Tuning [46.153828074152436]
我々は、低リソース言語における命令チューニングを強化するために、ピボット言語ガイド生成手法を提案する。
モデルを訓練して、まずピボット言語で命令を処理し、次にターゲット言語で応答を生成する。
提案手法は,LLMの命令追従能力が平均29%向上したことを示す。
論文 参考訳(メタデータ) (2023-11-15T05:28:07Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Prompting with Pseudo-Code Instructions [12.166296720125187]
我々は、分類、QA、生成言語タスクにまたがる132のタスクに対して、擬似コードプロンプトのデータセットを作成する。
これらのプロンプトと自然言語の対応を利用して, BLOOM と CodeGen の2つの LLM ファミリ上での性能について検討する。
実験の結果, 擬似符号命令を用いることで, 分類作業におけるF1得点の平均7~16ポイント, ROUGE-L得点の12~38%の増加(絶対値)が得られた。
論文 参考訳(メタデータ) (2023-05-19T16:25:01Z) - Benchmarking Language Models for Code Syntax Understanding [79.11525961219591]
事前学習された言語モデルは、自然言語処理とプログラム理解の両方において素晴らしい性能を示している。
本研究では,プログラムの構文構造を特定するための,最先端の事前訓練モデルの最初の徹底的なベンチマークを行う。
この結果から,既存のプログラミング言語の事前学習手法の限界が指摘され,構文構造をモデル化することの重要性が示唆された。
論文 参考訳(メタデータ) (2022-10-26T04:47:18Z) - Instruction Induction: From Few Examples to Natural Language Task
Descriptions [55.139554327372934]
実例に適合する自然言語命令を生成するように促すことで,言語モデルがいくつかの実演から基礎となるタスクを明示的に推論できることを示す。
InstructGPTは65.7%の人的パフォーマンスを達成するが、オリジナルのGPT-3モデルは9.8%にしか達しない。
論文 参考訳(メタデータ) (2022-05-22T09:22:37Z) - Towards Interpretable Natural Language Understanding with Explanations
as Latent Variables [146.83882632854485]
そこで本研究では,人間に注釈付き説明文の小さなセットだけを必要とする自然言語理解の枠組みを構築した。
我々のフレームワークは、ニューラルネットワークの基本的な推論過程をモデル化する潜在変数として、自然言語の説明を扱う。
論文 参考訳(メタデータ) (2020-10-24T02:05:56Z) - Multilingual Chart-based Constituency Parse Extraction from Pre-trained
Language Models [21.2879567125422]
本稿では,事前学習した言語モデルから完全(バイナリ)構文を抽出する手法を提案する。
本手法を多言語 PLM に適用することにより,9つの言語から文に対する非自明なパースを導き出すことができる。
論文 参考訳(メタデータ) (2020-04-08T05:42:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。