論文の概要: Novel models for fatigue life prediction under wideband random loads
based on machine learning
- arxiv url: http://arxiv.org/abs/2311.07114v1
- Date: Mon, 13 Nov 2023 07:09:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 15:28:01.214924
- Title: Novel models for fatigue life prediction under wideband random loads
based on machine learning
- Title(参考訳): 機械学習に基づく広帯域ランダム負荷下での疲労寿命予測の新しいモデル
- Authors: Hong Sun, Yuanying Qiu, Jing Li, Jin Bai, Ming Peng
- Abstract要約: 広帯域疲労寿命予測のための3つのモデルが3つの機械学習モデルに基づいて構築されている。
新たに開発された機械学習モデルは、寿命予測精度の点で従来の周波数領域モデルよりも優れている。
- 参考スコア(独自算出の注目度): 5.512561721249864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning as a data-driven solution has been widely applied in the
field of fatigue lifetime prediction. In this paper, three models for wideband
fatigue life prediction are built based on three machine learning models, i.e.
support vector machine (SVM), Gaussian process regression (GPR) and artificial
neural network (ANN). The generalization ability of the models is enhanced by
employing numerous power spectra samples with different bandwidth parameters
and a variety of material properties related to fatigue life. Sufficient Monte
Carlo numerical simulations demonstrate that the newly developed machine
learning models are superior to the traditional frequency-domain models in
terms of life prediction accuracy and the ANN model has the best overall
performance among the three developed machine learning models.
- Abstract(参考訳): データ駆動ソリューションとしての機械学習は、疲労寿命予測の分野で広く適用されている。
本稿では,3つの機械学習モデル,すなわち,サポートベクターマシン(svm),ガウス過程回帰(gpr),ニューラルネットワーク(ann)に基づいて,広帯域疲労寿命予測のための3つのモデルを構築した。
帯域幅パラメータの異なる多数のパワースペクトルサンプルと疲労寿命に関連するさまざまな材料特性を用いて、モデルの一般化能力を高める。
モンテカルロ数値シミュレーションにより、新たに開発された機械学習モデルは、寿命予測精度の点で従来の周波数領域モデルよりも優れており、3つの開発した機械学習モデルの中で、annモデルが最も優れた性能を持つことが示された。
関連論文リスト
- On Machine Learning Approaches for Protein-Ligand Binding Affinity Prediction [2.874893537471256]
本研究では,タンパク質-リガンド結合親和性予測における古典的木モデルと高度なニューラルネットワークの性能を評価する。
2次元モデルと3次元モデルを組み合わせることで、現在の最先端のアプローチを超えて、アクティブな学習結果が向上することを示す。
論文 参考訳(メタデータ) (2024-07-15T13:06:00Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Representer Point Selection for Explaining Regularized High-dimensional
Models [105.75758452952357]
本稿では,高次元表現器と呼ぶサンプルベース説明のクラスを紹介する。
私たちのワークホースは、一般化された高次元モデルに対する新しい代表者定理である。
提案手法の実証的性能について,実世界の2進分類データセットと2つの推薦システムデータセットを用いて検討した。
論文 参考訳(メタデータ) (2023-05-31T16:23:58Z) - EAMDrift: An interpretable self retrain model for time series [0.0]
EAMDrift(EAMDrift)は、複数の個人予測器から予測を合成し、性能指標に従って予測を重み付けする新しい手法である。
EAMDriftはデータのアウト・オブ・ディストリビューションパターンに自動的に適応し、各瞬間に使用する最も適切なモデルを特定するように設計されている。
本研究は,EAMDriftが個々のベースラインモデルより20%優れ,非解釈可能なアンサンブルモデルに匹敵する精度が得られることを示す。
論文 参考訳(メタデータ) (2023-05-31T13:25:26Z) - p$^3$VAE: a physics-integrated generative model. Application to the
pixel-wise classification of airborne hyperspectral images [0.6849746341453253]
物理モデルを統合する生成モデル p$3$VAE を導入する。
航空機搭載ハイパースペクトル画像の画素ワイド分類に3$VAEを適用した。
論文 参考訳(メタデータ) (2022-10-19T09:32:15Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Tensor networks for unsupervised machine learning [9.897828174118974]
本稿では,量子多体物理学の行列状態と機械学習の自己回帰モデルを組み合わせたテンソルネットワークモデルであるAutoregressive Matrix Product States(AMPS)を提案する。
提案手法は,既存のテンソルネットワークモデルや制限されたボルツマンマシンよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-24T12:51:00Z) - A Log-likelihood Regularized KL Divergence for Video Prediction with A
3D Convolutional Variational Recurrent Network [17.91970304953206]
フレーム予測のタスクに対して,リカレントネットワークを2つの方法で拡張する新しい変分モデルを提案する。
まず、将来の予測フレームのリカレントモデル、シーケンス入力、各時間ステップでの映像フレーム出力を含む全モジュールに3次元畳み込みを導入する。
第2に,変分モデルで一般的に用いられるklに加えて,最大確率推定を導入することにより,変分モデルの潜在損失予測を強化する。
論文 参考訳(メタデータ) (2020-12-11T05:05:31Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。