論文の概要: Semantically Grounded QFormer for Efficient Vision Language Understanding
- arxiv url: http://arxiv.org/abs/2311.07449v2
- Date: Mon, 16 Dec 2024 19:03:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 17:09:37.952404
- Title: Semantically Grounded QFormer for Efficient Vision Language Understanding
- Title(参考訳): 効率的な視覚言語理解のための意味的基底QFormer
- Authors: Moulik Choraria, Xinbo Wu, Sourya Basu, Nitesh Sekhar, Yue Wu, Xu Zhang, Prateek Singhal, Lav R. Varshney,
- Abstract要約: 近年,汎用視覚言語モデル (VLM) が注目されている。
非常に人気のある作業の1つは、QFormerと呼ばれるトレーニング可能なモジュールを使用して、視覚表現を言語にブリッジすることで、凍結したユニモーダルモデルを利用する。
我々はQFormerベースの視覚言語アライメントのためのより効率的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.503864963144956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: General purpose Vision Language Models (VLMs) have received tremendous interest in recent years, owing to their ability to learn rich vision-language correlations as well as their broad zero-shot competencies. One immensely popular line of work utilizes frozen unimodal models, by bridging vision representations to language using a trainable module called the QFormer. However, this method relies heavily on large-scale multimodal pretraining with huge computational overheads. To that end, we propose a more efficient framework for QFormer-based vision-language alignment. Our key idea relies on the observation that QFormer latents correspond more strongly to the frozen LLM's intermediate latent space. Consequently, instead of using QFormer latents as inputs to the LLM, we alter the framework by using the latents to directly condition the LLM latent space for image-to-text generation. We demonstrate the effectiveness of our approach against existing baselines in improving the efficiency of vision-language pretraining.
- Abstract(参考訳): 汎用視覚言語モデル(VLM)は、リッチな視覚言語相関学習能力と幅広いゼロショット能力から、近年大きな関心を集めている。
非常に人気のある作業の1つは、QFormerと呼ばれるトレーニング可能なモジュールを使用して、視覚表現を言語にブリッジすることで、凍結したユニモーダルモデルを利用する。
しかし,この手法は計算オーバーヘッドが大きい大規模マルチモーダル事前学習に大きく依存している。
そこで本研究では,QFormerに基づく視覚言語アライメントのための,より効率的なフレームワークを提案する。
我々のキーとなる考え方は、QFormer 潜伏空間が凍結 LLM の中間潜伏空間とより強く一致するという観察に依存している。
したがって、LLMへの入力としてQFormerラテントを使う代わりに、画像からテキストへの生成にLLMラテント空間を直接条件付けるために、ラテントを用いてフレームワークを変更する。
本稿では,既存のベースラインに対するアプローチの有効性を示す。
関連論文リスト
- MLAN: Language-Based Instruction Tuning Improves Zero-Shot Generalization of Multimodal Large Language Models [79.0546136194314]
マルチモーダルな大規模言語モデルのゼロショットタスクの一般化を改善するために,新しい命令チューニング手法を提案する。
提案手法の有効性を,言語と視覚の両面にまたがる9つの未知のデータセットに対して評価した。
論文 参考訳(メタデータ) (2024-11-15T20:09:59Z) - Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
本稿では,マルコフ決定過程の動的状態を予測するために,事前学習した大規模言語モデルをどのように活用することができるかを検討する。
本稿では,モデルに基づく政策評価とデータ強化型オフ政治強化学習という2つの強化学習環境における概念実証の応用について述べる。
論文 参考訳(メタデータ) (2024-10-15T15:46:53Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論のための新しいベンチマークを引き起こした。
我々はCVR-LLM(Complex Visual Reasoning Large Language Models)を提案する。
提案手法は,反復的自己修正ループを用いて,画像の詳細なコンテキスト認識記述に変換する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
論文 参考訳(メタデータ) (2024-09-21T02:10:19Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
マルチモーダル大言語モデル(MLLM)に視覚的プロンプトを注入する学習自由手法を提案する。
我々は,エネルギー関数に基づいて学習可能な潜伏変数を最適化し,注目マップにおける参照領域の強度を高める。
提案手法は,参照能力のMLLMへの統合に有望な方向を与え,ボックス,マスク,スクリブル,ポイントによる参照を支援する。
論文 参考訳(メタデータ) (2024-07-31T11:40:29Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-FormerはCLとMIMの相補的な強度を利用するために設計された軽量トランスフォーマーモジュールである。
X-Formerは、2つの凍結した視覚エンコーダから視覚言語表現学習とマルチモーダル・マルチモーダル生成学習をブートストラップする。
さらに、凍結したLLMから視覚から言語への生成学習をブートストラップし、X-Formerの視覚的特徴をLLMで解釈できるようにする。
論文 参考訳(メタデータ) (2024-07-18T18:39:54Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
ベースモデルの学習を多言語拡張プロセスから分離する新しいMoE-CTアーキテクチャを提案する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
論文 参考訳(メタデータ) (2024-06-25T11:03:45Z) - Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model [82.93634081255942]
本稿では,MLLMが低コストを維持しつつ高い精度を達成できるビジョン言語コネクタを提案する。
まず、視覚変換器における視覚アンカーの存在を明らかにし、それらを抽出するためのコスト効率の良い探索アルゴリズムを提案する。
Anchor former (AcFormer) は、事前学習中に得られた視覚的アンカーから得られる豊富な事前知識を活用するために設計された、新しい視覚言語コネクタである。
論文 参考訳(メタデータ) (2024-05-28T04:23:00Z) - PaLM2-VAdapter: Progressively Aligned Language Model Makes a Strong Vision-language Adapter [21.45490901191175]
PaLM2-VAdapterは、視覚言語アダプタとして徐々に整列した言語モデルを採用している。
提案手法は、最先端の大規模視覚言語モデルよりも3070%少ないパラメータでこれらの進歩を実現する。
論文 参考訳(メタデータ) (2024-02-16T18:54:47Z) - Concept-Guided Prompt Learning for Generalization in Vision-Language
Models [33.361744437967126]
視覚言語モデルのための概念ガイド型プロンプト学習を提案する。
Contrastive Language-Image Pretrainingの知識を活用して、ビジュアルコンセプトキャッシュを作成します。
テキスト特徴を洗練させるために,多段階の視覚特徴をテキスト特徴に変換するプロジェクタを開発する。
論文 参考訳(メタデータ) (2024-01-15T04:04:47Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$は、視覚条件付き言語生成モデルの事前トレーニング用に設計されたフレームワークである。
提案手法は,視覚言語モデルの学習を5倍に加速させるが,全体的な性能に顕著な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-10-05T03:40:06Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
非言語的なイメージを外国語のような個別のトークン列に変換するために、よく設計されたビジュアルトークン化器を導入する。
結果として得られる視覚トークンは、単語に相応しいハイレベルな意味論を含み、画像から変化する動的シーケンス長もサポートする。
この統合によりLaVITは、マルチモーダルコンテンツの理解と生成を同時に行うための印象的な汎用インターフェースとして機能する。
論文 参考訳(メタデータ) (2023-09-09T03:01:38Z) - Evaluation and Enhancement of Semantic Grounding in Large
Vision-Language Models [25.413601452403213]
LVLM(Large Vision-Language Models)は、様々な視覚言語タスクに顕著な利点をもたらす。
制約付きセマンティックグラウンド機能は、現実のシナリオにおけるアプリケーションの障害となる。
LVLMのセマンティックグラウンド機能を改善することを目的とした,データ中心の強化手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T22:59:56Z) - Bootstrapping Vision-Language Learning with Decoupled Language
Pre-training [46.570154746311935]
本稿では,資源集約型視覚言語事前学習のための凍結型大規模言語モデル (LLM) の最適化を目的とした新しい手法を提案する。
われわれのアプローチは、言語コンポーネントに集中して、視覚的特徴と整合する最適なプロンプトを具体的に特定することによって、多様化している。
我々のフレームワークは、ビデオ学習タスクにおけるその成功例によって検証されるように、アーキテクチャ設計の観点からは、モダリティ非依存かつ柔軟である。
論文 参考訳(メタデータ) (2023-07-13T21:08:15Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
本稿では,セマンティック誘導視覚適応(SgVA)と呼ばれる新しいフレームワークを提案する。
SgVAは、視覚特異的のコントラスト損失、クロスモーダルのコントラスト損失、暗黙の知識蒸留を包括的に利用することで、識別的なタスク固有の視覚特徴を生成する。
13のデータセットの最先端の結果は、適応された視覚的特徴が、クロスモーダルな特徴を補完し、少数の画像分類を改善することを実証している。
論文 参考訳(メタデータ) (2022-11-28T14:58:15Z) - Pre-training image-language transformers for open-vocabulary tasks [53.446599611203474]
本稿では,様々なタスクの混合に基づく視覚・言語トランスフォーマーモデルに対する事前学習手法を提案する。
本稿では,事前学習における画像テキストキャプションデータの利用について検討する。
本研究では,視覚質問応答,視覚的エンターテイメント,キャプションなど,テキスト生成型視覚+言語タスクの手法の評価を行い,標準的な事前学習手法よりも大きな効果を示した。
論文 参考訳(メタデータ) (2022-09-09T16:11:11Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z) - A Simple Long-Tailed Recognition Baseline via Vision-Language Model [92.2866546058082]
視覚の世界は自然にオープンクラスの長い尾の分布を示しており、現代の視覚システムには大きな課題をもたらしている。
視覚認識のための新しい経路におけるコントラスト言語事前学習の最近の進歩
我々は、長い尾の認識にコントラッシブな視覚言語モデルを活用するために、BALLADを提案する。
論文 参考訳(メタデータ) (2021-11-29T17:49:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。