論文の概要: Causal Discovery under Latent Class Confounding
- arxiv url: http://arxiv.org/abs/2311.07454v1
- Date: Mon, 13 Nov 2023 16:35:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 13:33:16.415110
- Title: Causal Discovery under Latent Class Confounding
- Title(参考訳): 潜学級混在時の因果発見
- Authors: Bijan Mazaheri, Spencer Gordon, Yuval Rabani, Leonard Schulman
- Abstract要約: 因果発見」は、データから因果構造を学習する問題を記述している。
共起基数が有界基数である場合、因果発見は依然として達成可能であることを実証する。
- 参考スコア(独自算出の注目度): 2.3759432635713895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Directed acyclic graphs are used to model the causal structure of a system.
``Causal discovery'' describes the problem of learning this structure from
data. When data is an aggregate from multiple sources (populations or
environments), global confounding obscures conditional independence properties
that drive many causal discovery algorithms. For this reason, existing causal
discovery algorithms are not suitable for the multiple-source setting. We
demonstrate that, if the confounding is of bounded cardinality (i.e. the data
comes from a limited number of sources), causal discovery can still be
achieved. The feasibility of this problem is governed by a trade-off between
the cardinality of the global confounder, the cardinalities of the observed
variables, and the sparsity of the causal structure.
- Abstract(参考訳): 有向非巡回グラフはシステムの因果構造をモデル化するために用いられる。
``causal discovery''はこの構造をデータから学ぶ問題を記述する。
データが複数のソース(人口や環境)からの集約である場合、グローバル結合は多くの因果発見アルゴリズムを駆動する条件付き独立性があいまいになる。
このため、既存の因果発見アルゴリズムはマルチソース設定には適していない。
共起が有界基数である場合(つまり、データは限られた情報源から来ている)、因果発見は依然として達成可能であることを実証する。
この問題の実現性は、グローバルな共同設立者の基数、観察された変数の基数、因果構造の疎性の間のトレードオフによって管理される。
関連論文リスト
- A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables [28.51579090194802]
因果ネットワークの至る所で、因果関係の隠れ変数の存在を許容する因果発見のための新しい枠組みを提案する。
ランクに基づく潜在因果探索アルゴリズム(RLCD)を開発し、隠れ変数を効率よく探索し、その濃度を判定し、測定値と隠れ変数の両方に対して因果構造全体を発見する。
合成・実世界のパーソナリティデータセットを用いた実験結果から,有限サンプルケースにおける提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-12-18T07:57:39Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Structural restrictions in local causal discovery: identifying direct causes of a target variable [0.9208007322096533]
観測的関節分布から対象変数の直接的な原因の集合を学ぶことは、科学の基本的な問題である。
ここでは、完全なDAGではなく、1つのターゲット変数の直接的な原因を特定することにのみ関心があります。
これにより、識別可能性の仮定を緩和し、より高速で堅牢なアルゴリズムを開発することができる。
論文 参考訳(メタデータ) (2023-07-29T18:31:35Z) - Heteroscedastic Causal Structure Learning [2.566492438263125]
ガウス雑音下での不連続因果構造学習問題に取り組む。
因果的機構の正常性を利用して、有効な因果的順序付けを復元することができる。
その結果,単純な因果構造学習アルゴリズムHOST (Heteroscedastic causal STructure Learning) が得られた。
論文 参考訳(メタデータ) (2023-07-16T07:53:16Z) - Differentiable Invariant Causal Discovery [106.87950048845308]
観測データから因果構造を学ぶことは、機械学習の基本的な課題である。
本稿では,不特定変分因果解法(DICD)を提案する。
合成および実世界のデータセットに関する大規模な実験は、DICDがSHDの36%まで最先端の因果発見手法より優れていることを検証している。
論文 参考訳(メタデータ) (2022-05-31T09:29:07Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
クラスタ因果図(略してC-DAG)と呼ばれる新しいタイプのグラフィカルモデルを導入する。
C-DAGは、限定された事前知識に基づいて変数間の関係を部分的に定義することができる。
我々はC-DAGに対する因果推論のための基礎と機械を開発する。
論文 参考訳(メタデータ) (2022-02-22T21:27:31Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
我々は因果発見の課題と観察データに焦点をあてる。
因果構造の特異な識別に必要かつ十分な条件のセットを導出する。
論文 参考訳(メタデータ) (2021-10-30T21:32:42Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
論文 参考訳(メタデータ) (2021-07-22T14:23:08Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
本研究では,観測データ分布に特徴的フットプリントが残っており,突発的・因果的影響を解消できることを示す。
汎用ソルバで実装し,高次元問題へのスケールアップが可能なスコアベース因果検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T11:07:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。