論文の概要: Causal Discovery under Latent Class Confounding
- arxiv url: http://arxiv.org/abs/2311.07454v4
- Date: Thu, 23 May 2024 11:55:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-26 20:13:50.746301
- Title: Causal Discovery under Latent Class Confounding
- Title(参考訳): 潜学級混在時の因果発見
- Authors: Bijan Mazaheri, Spencer Gordon, Yuval Rabani, Leonard Schulman,
- Abstract要約: 非巡回因果構造は、因果を示す矢印を持つ有向非巡回グラフ(DAG)を用いて記述することができる。
グローバルに構築された因果構造は、パラメトリックな仮定なしでも同定可能であることを示す。
- 参考スコア(独自算出の注目度): 2.1749194587826026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An acyclic causal structure can be described using a directed acyclic graph (DAG) with arrows indicating causation. The task of learning this structure from data is known as "causal discovery." Diverse populations or changing environments can sometimes give rise to heterogeneous data. This heterogeneity can be thought of as a mixture model with multiple "sources," each exerting their own distinct signature on the observed variables. From this perspective, the source is a latent common cause for every observed variable. While some methods for causal discovery are able to work around unobserved confounding in special cases, the only known ways to deal with a global confounder (such as a latent class) involve parametric assumptions. Focusing on discrete observables, we demonstrate that globally confounded causal structures can still be identifiable without parametric assumptions, so long as the number of latent classes remains small relative to the size and sparsity of the underlying DAG.
- Abstract(参考訳): 非巡回因果構造は、因果を示す矢印を持つ有向非巡回グラフ(DAG)を用いて記述することができる。
この構造をデータから学習する作業は「因果発見(causal discovery)」として知られている。
異種集団や環境の変化は、時として異種データを引き起こすことがある。
この異質性は、複数の「源」が混ざったモデルとみなすことができ、それぞれが観察された変数に対してそれぞれ独自のシグネチャを与える。
この観点では、ソースは観測されたすべての変数に対して、遅延した共通の原因である。
因果発見のためのいくつかの方法は、特別な場合において観測されていない共起を回避できるが、グローバルな共同設立者(潜伏階級など)を扱う唯一の既知の方法はパラメトリックな仮定である。
離散オブザーバブルに焦点をあてて、基礎となるDAGのサイズと空間性に対して潜在クラス数が小さい限り、グローバルに構築された因果構造がパラメトリックな仮定なしでも識別可能であることを実証する。
関連論文リスト
- A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables [28.51579090194802]
因果ネットワークの至る所で、因果関係の隠れ変数の存在を許容する因果発見のための新しい枠組みを提案する。
ランクに基づく潜在因果探索アルゴリズム(RLCD)を開発し、隠れ変数を効率よく探索し、その濃度を判定し、測定値と隠れ変数の両方に対して因果構造全体を発見する。
合成・実世界のパーソナリティデータセットを用いた実験結果から,有限サンプルケースにおける提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-12-18T07:57:39Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [85.67870425656368]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Weight-variant Latent Causal Models [79.79711624326299]
因果表現学習は、低レベルの観測の背後にある潜伏した高レベルの因果変数を明らかにする。
本研究では,潜伏因果変数の同定に焦点をあてる。
推移性は潜伏因果変数の識別性を著しく阻害することを示す。
本稿では,潜時因果変数を直接学習する構造式caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
我々は因果発見の課題と観察データに焦点をあてる。
因果構造の特異な識別に必要かつ十分な条件のセットを導出する。
論文 参考訳(メタデータ) (2021-10-30T21:32:42Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
論文 参考訳(メタデータ) (2021-07-22T14:23:08Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
本研究では,観測データ分布に特徴的フットプリントが残っており,突発的・因果的影響を解消できることを示す。
汎用ソルバで実装し,高次元問題へのスケールアップが可能なスコアベース因果検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T11:07:59Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
変分オートエンコーダ(VAE)の枠組みは、観測から独立した因子をアンタングルするために一般的に用いられる。
本稿では, 因果内因性因子を因果内因性因子に変換する因果層を含むVOEベースの新しいフレームワークCausalVAEを提案する。
その結果、CausalVAEが学習した因果表現は意味論的に解釈可能であり、DAG(Directed Acyclic Graph)としての因果関係は精度良く同定された。
論文 参考訳(メタデータ) (2020-04-18T20:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。