論文の概要: Drivable 3D Gaussian Avatars
- arxiv url: http://arxiv.org/abs/2311.08581v2
- Date: Mon, 10 Feb 2025 20:17:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 17:19:29.623004
- Title: Drivable 3D Gaussian Avatars
- Title(参考訳): 3Dガウスアバター
- Authors: Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, Javier Romero,
- Abstract要約: 人体用多層型3D制御モデルであるD3GAについて述べる。
3Dガウスのような原始体は自然に再配向し、核はカプセル化四面体の変形勾配によって拡張される。
ケージベースモデルを用いて,アバターを衣服,手,顔などの層に分解する合成パイプラインを導入する。
- 参考スコア(独自算出の注目度): 42.11760740161368
- License:
- Abstract: We present Drivable 3D Gaussian Avatars (D3GA), a multi-layered 3D controllable model for human bodies that utilizes 3D Gaussian primitives embedded into tetrahedral cages. The advantage of using cages compared to commonly employed linear blend skinning (LBS) is that primitives like 3D Gaussians are naturally re-oriented and their kernels are stretched via the deformation gradients of the encapsulating tetrahedron. Additional offsets are modeled for the tetrahedron vertices, effectively decoupling the low-dimensional driving poses from the extensive set of primitives to be rendered. This separation is achieved through the localized influence of each tetrahedron on 3D Gaussians, resulting in improved optimization. Using the cage-based deformation model, we introduce a compositional pipeline that decomposes an avatar into layers, such as garments, hands, or faces, improving the modeling of phenomena like garment sliding. These parts can be conditioned on different driving signals, such as keypoints for facial expressions or joint-angle vectors for garments and the body. Our experiments on two multi-view datasets with varied body shapes, clothes, and motions show higher-quality results. They surpass PSNR and SSIM metrics of other SOTA methods using the same data while offering greater flexibility and compactness.
- Abstract(参考訳): 四面体ケージに埋め込まれた3次元ガウス原始体を利用した人体用多層3次元制御可能なモデルであるD3GAについて述べる。
一般的に使用されるリニアブレンドスキン(LBS)と比較してケージを使用する利点は、3Dガウスのような原始体が自然に向きを変え、核はカプセル化テトラヘドロンの変形勾配によって伸長されることである。
追加のオフセットはテトラヘドロン頂点のためにモデル化され、描画されるプリミティブの広範な集合から低次元の駆動ポーズを効果的に分離する。
この分離は、各テトラヘドロンの3次元ガウスへの局所的な影響によって達成され、最適化が改善された。
ケージをベースとした変形モデルを用いて,アバターを衣服,手,顔などの層に分解する合成パイプラインを導入し,衣服のスライディングなどの現象のモデル化を改善した。
これらの部分は、顔の表情のキーポイントや、衣服や身体の関節角ベクトルなど、異なる駆動信号で条件付けすることができる。
身体形状, 衣服, 動作の異なる2つの多視点データセットによる実験により, 高品質な結果が得られた。
彼らは同じデータを使用して他のSOTAメソッドのPSNRおよびSSIMメトリクスを上回り、柔軟性とコンパクト性を提供する。
関連論文リスト
- GaussRender: Learning 3D Occupancy with Gaussian Rendering [84.60008381280286]
GaussRenderは、Voxelベースの監視を強化する3Dから2Dへのプラグアンドプレイのリジェクション損失である。
提案手法は, 任意の2次元視点に3次元ボクセル表現を投影し, ガウススプラッティングをボクセルの効率的かつ微分可能なレンダリングプロキシとして活用する。
論文 参考訳(メタデータ) (2025-02-07T16:07:51Z) - Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set [49.780302894956776]
多視点表面再構成における符号付き距離関数(SDF)の推測は不可欠である。
本稿では3DGSとニューラルSDFの学習をシームレスに融合する手法を提案する。
我々の数値的および視覚的比較は、広く使用されているベンチマークの最先端結果よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-10-18T05:48:06Z) - L3DG: Latent 3D Gaussian Diffusion [74.36431175937285]
L3DGは3次元ガウス拡散定式化による3次元ガウスの3次元モデリングのための最初のアプローチである。
我々は、部屋の大きさのシーンで効率的に操作するために、スパース畳み込みアーキテクチャーを用いている。
3Dガウス表現を利用することで、生成されたシーンを任意の視点からリアルタイムでレンダリングすることができる。
論文 参考訳(メタデータ) (2024-10-17T13:19:32Z) - DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
本稿では,メッシュ表現と幾何スキン技術を組み合わせた新しいフレームワークDreamMesh4Dを紹介し,モノクロビデオから高品質な4Dオブジェクトを生成する。
我々の手法は現代のグラフィックパイプラインと互換性があり、3Dゲームや映画産業におけるその可能性を示している。
論文 参考訳(メタデータ) (2024-10-09T10:41:08Z) - iHuman: Instant Animatable Digital Humans From Monocular Videos [16.98924995658091]
モノクロビデオからアニマタブルな3Dデジタル人間を作るための,迅速かつシンプルで効果的な方法を提案する。
この研究は、人間の身体の正確な3Dメッシュ型モデリングの必要性を達成し、説明します。
我々の手法は(訓練時間の観点から)最も近い競合相手よりも桁違いに高速である。
論文 参考訳(メタデータ) (2024-07-15T18:51:51Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
我々は,超現実的な頭部アバターを作成し,それをリアルタイムにレンダリングする新しい手法を提案する。
UVマップされた3Dメッシュは滑らかな表面のシャープでリッチなテクスチャを捉えるのに使われ、3Dガウス格子は複雑な幾何学構造を表現するために用いられる。
モデル化された結果が最先端のアプローチを上回る実験を行ないました。
論文 参考訳(メタデータ) (2024-03-18T04:01:26Z) - Gaussian3Diff: 3D Gaussian Diffusion for 3D Full Head Synthesis and
Editing [53.05069432989608]
本稿では,3次元人間の頭部を顕著な柔軟性で生成するための新しい枠組みを提案する。
本手法は,顔の特徴や表情を微妙に編集した多彩でリアルな3次元頭部の作成を容易にする。
論文 参考訳(メタデータ) (2023-12-05T19:05:58Z) - SplatArmor: Articulated Gaussian splatting for animatable humans from
monocular RGB videos [15.74530749823217]
SplatArmorは, 3次元ガウスモデルを用いたパラメータ化ボディモデルの装甲により, 詳細かつアニマタブルな人体モデルを復元する新しい手法である。
我々のアプローチは、人間を標準空間内の3次元ガウスの集合として表現し、その記述は、下層のSMPL幾何学のスキン化を拡張することによって定義される。
ZJU MoCap と People Snapshot のデータセットに魅力的な結果が得られた。
論文 参考訳(メタデータ) (2023-11-17T18:47:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。