Synthesis and Arithmetic of Single Qutrit Circuits
- URL: http://arxiv.org/abs/2311.08696v4
- Date: Tue, 18 Feb 2025 20:21:13 GMT
- Title: Synthesis and Arithmetic of Single Qutrit Circuits
- Authors: Amolak Ratan Kalra, Michele Mosca, Dinesh Valluri,
- Abstract summary: We study qutrit circuits consisting of words over the Clifford$+D$ cyclotomic gate set.
The framework developed to formulate qutrit gate synthesis for Clifford$+D$ extends to qudits of arbitrary prime power.
- Score: 0.8192907805418581
- License:
- Abstract: In this paper we study single qutrit circuits consisting of words over the Clifford$+D$ cyclotomic gate set, where $D=\text{diag}(\pm\xi^{a},\pm\xi^{b},\pm\xi^{c})$, $\xi$ is a primitive $9$-th root of unity and $a,b,c$ are integers. We characterize classes of qutrit unit vectors $z$ with entries in $\mathbb{Z}[\xi, \frac{1}{\chi}]$ based on the possibility of reducing their smallest denominator exponent (sde) with respect to $\chi := 1 - \xi,$ by acting an appropriate gate in Clifford$+D$. We do this by studying the notion of `derivatives mod $3$' of an arbitrary element of $\mathbb{Z}[\xi]$ and using it to study the smallest denominator exponent of $HDz$ where $H$ is the qutrit Hadamard gate and $D$. In addition, we reduce the problem of finding all unit vectors of a given sde to that of finding integral solutions of a positive definite quadratic form along with some additional constraints. As a consequence we prove that the Clifford$+D$ gates naturally arise as gates with sde $0$ and $3$ in the group $U(3,\mathbb{Z}[\xi, \frac{1}{\chi}])$ of $3 \times 3$ unitaries with entries in $\mathbb{Z}[\xi, \frac{1}{\chi}]$. We illustrate the general applicability of these methods to obtain an exact synthesis algorithm for Clifford$+R$ and recover the previous exact synthesis algorithm in \cite{kmm}. The framework developed to formulate qutrit gate synthesis for Clifford$+D$ extends to qudits of arbitrary prime power.
Related papers
- Overcomplete Tensor Decomposition via Koszul-Young Flattenings [63.01248796170617]
We give a new algorithm for decomposing an $n_times n times n_3$ tensor as the sum of a minimal number of rank-1 terms.
We show that an even more general class of degree-$d$s cannot surpass rank $Cn$ for a constant $C = C(d)$.
arXiv Detail & Related papers (2024-11-21T17:41:09Z) - The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - A class of ternary codes with few weights [0.0]
In this paper, we investigate a ternary code $mathcalC$ of length $n$, defined by $mathcalC$ := (textTr) := (textTr(dx), dots, dots, d_n$.
Using recent results on explicit evaluations of exponential sums, we determine the Weil bound, and techniques, we show that the dual code of $mathcalC$ is optimal with respect to the Hamming bound.
arXiv Detail & Related papers (2024-10-05T16:15:50Z) - Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits [0.0]
We prove that a $3ntimes 3n$ unitary matrix $U$ can be represented by an $n$-qutrit circuit over the Clifford-cyclotomic gate set of degree $3k$.
arXiv Detail & Related papers (2024-05-13T19:27:48Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Exact Synthesis of Multiqubit Clifford-Cyclotomic Circuits [0.8411424745913132]
We show that when $n$ is a power of 2, a multiqubit unitary matrix $U$ can be exactly represented by a circuit over $mathcalG_n$.
We moreover show that $log(n)-2$ ancillas are always sufficient to construct a circuit for $U$.
arXiv Detail & Related papers (2023-11-13T20:46:51Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
For every $delta>0,$ we construct CNF and formulas of size with approximate degree $Omega(n1-delta),$ essentially matching the trivial upper bound of $n.
We show that for every $delta>0$, these models require $Omega(n1-delta)$, $Omega(n/4kk2)1-delta$, and $Omega(n/4kk2)1-delta$, respectively.
arXiv Detail & Related papers (2022-09-04T10:01:39Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - An Algorithm for Reversible Logic Circuit Synthesis Based on Tensor Decomposition [0.0]
An algorithm for reversible logic synthesis is proposed.
Map can be written as a tensor product of a rank-($2n-2$) tensor and the $2times 2$ identity matrix.
arXiv Detail & Related papers (2021-07-09T08:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.