論文の概要: MELA: Multilingual Evaluation of Linguistic Acceptability
- arxiv url: http://arxiv.org/abs/2311.09033v3
- Date: Thu, 6 Jun 2024 12:31:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-08 00:29:50.106766
- Title: MELA: Multilingual Evaluation of Linguistic Acceptability
- Title(参考訳): MELA:言語学的アクセプティビリティの多言語評価
- Authors: Ziyin Zhang, Yikang Liu, Weifang Huang, Junyu Mao, Rui Wang, Hai Hu,
- Abstract要約: 言語アクセプタビリティの多言語評価 -- MELA -- 10言語を対象とする46Kのサンプルを用いて、言語アクセプタビリティに関する最も大きなベンチマークを提示する。
多言語解釈可能性の追求において, 微調整XLM-Rを用いた探索実験を行った。
言語間移動実験は、受容可能性判定における伝達が非自明であることを示す。
- 参考スコア(独自算出の注目度): 7.524375463656369
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability -- MELA, with 46K samples covering 10 languages from a diverse set of language families. We establish LLM baselines on this benchmark, and investigate cross-lingual transfer in acceptability judgements with XLM-R. In pursuit of multilingual interpretability, we conduct probing experiments with fine-tuned XLM-R to explore the process of syntax capability acquisition. Our results show that GPT-4o exhibits a strong multilingual ability, outperforming fine-tuned XLM-R, while open-source multilingual models lag behind by a noticeable gap. Cross-lingual transfer experiments show that transfer in acceptability judgment is non-trivial: 500 Icelandic fine-tuning examples lead to 23 MCC performance in a completely unrelated language -- Chinese. Results of our probing experiments indicate that training on MELA improves the performance of XLM-R on syntax-related tasks. Our data is available at https://github.com/sjtu-compling/MELA.
- Abstract(参考訳): 本稿では,言語アクセプタビリティの多言語評価 -- MELA -- を,多言語ファミリーの10言語を対象とする46Kサンプルを用いて実施した。
我々は,このベンチマークに基づいてLLMベースラインを確立し,XLM-Rを用いた受理性判定における言語間移動について検討する。
マルチリンガル解釈可能性の追求において,微調整されたXLM-Rを用いた探索実験を行い,構文能力獲得のプロセスについて検討する。
以上の結果から, GPT-4oは優れた多言語能力を示し, 微調整されたXLM-Rよりも優れており, オープンソースの多言語モデルは顕著なギャップで遅れていることがわかった。
500のアイスランドの微調整例は、完全に無関係な言語(中国語)で23のMCCのパフォーマンスをもたらす。
その結果,MELAにおける学習は,構文関連タスクにおけるXLM-Rの性能を向上させることが示唆された。
私たちのデータは、https://github.com/sjtu-compling/MELA.comで公開されています。
関連論文リスト
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models [53.9835961434552]
本研究では,中国語に対する大規模言語モデル(LLM)の一般化性を評価するために,中国語命令追跡ベンチマーク(CIF-Bench)を導入する。
CIF-Benchは150のタスクと15,000の入力出力ペアで構成され、複雑な推論と中国の文化的ニュアンスをテストするためにネイティブスピーカーによって開発された。
データ汚染を軽減するため、データセットの半分しか公開せず、残りは非公開であり、スコア分散を最小限に抑えるために多種多様な命令を導入する。
論文 参考訳(メタデータ) (2024-02-20T16:02:12Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes [9.254047358707014]
本稿では,Alpaca-52K,Dolly-15K,Vicuna Benchmarkを132言語に翻訳する多言語インストラクション・チューニングデータセット(MITS)を紹介する。
次に,emphTaCo: Translation-Assisted Cross-Lingualityという新たな手法を提案する。
提案手法は,Vicuna Benchmark データセットの低リソース言語に対して 82% のスコアで GPT-4 を圧縮し,命令チューニングと比較して性能を2倍にすることを示す。
論文 参考訳(メタデータ) (2023-11-17T06:55:32Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning:
Insights and Observations [90.73517523001149]
本稿では, マルチリンガル数学推論 (xMR) LLM の探索と学習の先駆者である。
翻訳を利用して,最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
我々は、MathOctopusという名の強力なxMR LLMを構築するための異なるトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-10-31T08:09:20Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Investigating the Translation Performance of a Large Multilingual
Language Model: the Case of BLOOM [8.858671209228536]
複数のデータセットにまたがる機械翻訳性能を評価することで,BLOOMの多言語能力に着目する。
本稿では, 素早い設計, モデルサイズ, 言語間移動, 帰納的文脈の利用など, 様々な側面について検討する。
論文 参考訳(メタデータ) (2023-03-03T13:23:42Z) - Probing Multilingual Language Models for Discourse [0.0]
XLM-RoBERTaファミリーのモデルが常に最高のパフォーマンスを示していることが分かりました。
また, モデル蒸留は, 文表現の言語間移動能力に悪影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-09T06:34:21Z) - AmericasNLI: Evaluating Zero-shot Natural Language Understanding of
Pretrained Multilingual Models in Truly Low-resource Languages [75.08199398141744]
我々は、XNLI(Conneau et al)の拡張である AmericasNLI を提示する。
は、アメリカ大陸の10の原住民の言語である。
XLM-Rで実験を行い、複数のゼロショットおよび翻訳ベースのアプローチをテストします。
XLM-Rのゼロショット性能は全10言語で低調であり、平均性能は38.62%である。
論文 参考訳(メタデータ) (2021-04-18T05:32:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。