論文の概要: How Multilingual is Multilingual LLM?
- arxiv url: http://arxiv.org/abs/2311.09071v1
- Date: Wed, 15 Nov 2023 16:13:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 15:19:47.274743
- Title: How Multilingual is Multilingual LLM?
- Title(参考訳): マルチ言語LLMとは何でしょう?
- Authors: Fei Yuan, Shuai Yuan, Zhiyong Wu, Lei Li
- Abstract要約: 本研究では,101言語にまたがる徹底的な分析を行うことにより,Large Language Models (LLM) の多言語能力を評価する。
それぞれのクアドラントを掘り下げることで、分類の背後にある理論的根拠を明らかにし、これらの言語をチューニングするための実行可能なガイドラインを提供します。
- 参考スコア(独自算出の注目度): 20.90512352559827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs), trained predominantly on extensive English
data, often exhibit limitations when applied to other languages. Current
research is primarily focused on enhancing the multilingual capabilities of
these models by employing various tuning strategies. Despite their
effectiveness in certain languages, the understanding of the multilingual
abilities of LLMs remains incomplete. This study endeavors to evaluate the
multilingual capacity of LLMs by conducting an exhaustive analysis across 101
languages, and classifies languages with similar characteristics into four
distinct quadrants. By delving into each quadrant, we shed light on the
rationale behind their categorization and offer actionable guidelines for
tuning these languages. Extensive experiments reveal that existing LLMs possess
multilingual capabilities that surpass our expectations, and we can
significantly improve the multilingual performance of LLMs by focusing on these
distinct attributes present in each quadrant.
- Abstract(参考訳): 大きな言語モデル (LLMs) は、主に英語のデータに基づいて訓練され、しばしば他の言語に適用された場合の制限を示す。
現在の研究は主に、様々なチューニング戦略を用いて、これらのモデルの多言語能力の向上に重点を置いている。
特定の言語での有効性にもかかわらず、LLMの多言語能力の理解はいまだに不完全である。
本研究では,LLMの多言語能力を評価するために,101言語にまたがる徹底的な分析を行い,類似した特徴を持つ言語を4つの四分詞に分類する。
それぞれのクアドラントを掘り下げることで、分類の背後にある理論的根拠を明らかにし、これらの言語をチューニングするための実行可能なガイドラインを提供します。
大規模実験により,既存のLLMは期待を超える多言語機能を有しており,これらの特徴に着目してLLMの多言語性能を著しく向上させることができることがわかった。
関連論文リスト
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Teaching LLMs to Abstain across Languages via Multilingual Feedback [40.84205285309612]
多言語フィードバックは,多様な言語,文化,コミュニティ間の知識ギャップを識別する上で有効であることを示す。
大規模な実験により、多言語フィードバックアプローチは、様々な強いベースラインよりも優れていることが示された。
さらに分析したところ、多言語フィードバックは多言語話者に役立てるための効果的かつ公平な回避戦略であることがわかった。
論文 参考訳(メタデータ) (2024-06-22T21:59:12Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
大規模言語モデル (LLM) は多言語機能を示しているが、トレーニングコーパスの不均衡のため、主に英語中心である。
この作業は、NLPタスクから実際のユーザクエリまで、評価を拡張します。
深い言語理解を必要とする文化関連のタスクでは、ネイティブ言語のプロンプトがより有望になる傾向があります。
論文 参考訳(メタデータ) (2024-03-15T12:47:39Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions [68.01449013641532]
大規模事前学習言語モデル(LLM)は多言語翻訳において強力な能力を示している。
本稿では,多言語事前学習言語モデルであるXGLM-7Bを微調整して,多言語翻訳を行う方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T12:00:24Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。