Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization
- URL: http://arxiv.org/abs/2311.09096v2
- Date: Wed, 12 Jun 2024 08:28:15 GMT
- Title: Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization
- Authors: Zhexin Zhang, Junxiao Yang, Pei Ke, Fei Mi, Hongning Wang, Minlie Huang,
- Abstract summary: We propose to integrate goal prioritization at both training and inference stages to counteract the intrinsic conflict between the goals of being helpful and ensuring safety.
Our work thus contributes to the comprehension of jailbreaking attacks and defenses, and sheds light on the relationship between LLMs' capability and safety.
- Score: 98.18718484152595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While significant attention has been dedicated to exploiting weaknesses in LLMs through jailbreaking attacks, there remains a paucity of effort in defending against these attacks. We point out a pivotal factor contributing to the success of jailbreaks: the intrinsic conflict between the goals of being helpful and ensuring safety. Accordingly, we propose to integrate goal prioritization at both training and inference stages to counteract. Implementing goal prioritization during inference substantially diminishes the Attack Success Rate (ASR) of jailbreaking from 66.4% to 3.6% for ChatGPT. And integrating goal prioritization into model training reduces the ASR from 71.0% to 6.6% for Llama2-13B. Remarkably, even in scenarios where no jailbreaking samples are included during training, our approach slashes the ASR by half. Additionally, our findings reveal that while stronger LLMs face greater safety risks, they also possess a greater capacity to be steered towards defending against such attacks, both because of their stronger ability in instruction following. Our work thus contributes to the comprehension of jailbreaking attacks and defenses, and sheds light on the relationship between LLMs' capability and safety. Our code is available at \url{https://github.com/thu-coai/JailbreakDefense_GoalPriority}.
Related papers
- Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, MLLMs remain vulnerable to jailbreak attacks.
We propose Immune, an inference-time defense framework that leverages a safe reward model to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
We investigate why Vision Large Language Models (VLLMs) are prone to jailbreak attacks.
We then make a key observation: existing defense mechanisms suffer from an textbfover-prudence problem.
We find that the two representative evaluation methods for jailbreak often exhibit chance agreement.
arXiv Detail & Related papers (2024-11-13T07:57:19Z) - Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
We propose a novel black-box jailbreak attacking framework that incorporates various LLM-as-Attacker methods.
Our method is designed based on three key observations from existing jailbreaking studies and practices.
arXiv Detail & Related papers (2024-10-31T01:55:33Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach [25.31933913962953]
Large Language Models (LLMs) have gained widespread use, raising concerns about their security.
We introduce PathSeeker, a novel black-box jailbreak method, which is inspired by the game of rats escaping a maze.
Our method outperforms five state-of-the-art attack techniques when tested across 13 commercial and open-source LLMs.
arXiv Detail & Related papers (2024-09-21T15:36:26Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [21.02295266675853]
Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization.
We propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content.
arXiv Detail & Related papers (2024-07-23T06:14:41Z) - Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks [89.54736699767315]
We conjecture that directly unlearn the harmful knowledge in the LLM can be a more effective way to defend against jailbreak attacks.
Our solution reduced the Attack Success Rate (ASR) in Vicuna-7B from 82.6% to 7.7% on out-of-distribution (OOD) harmful questions.
This significantly outperforms Llama2-7B-Chat, which is fine-tuned on about 0.1M safety alignment samples but still has an ASR of 21.9% even under the help of an additional safety system prompt.
arXiv Detail & Related papers (2024-07-03T07:14:05Z) - Bag of Tricks: Benchmarking of Jailbreak Attacks on LLMs [13.317364896194903]
Large Language Models (LLMs) have demonstrated significant capabilities in executing complex tasks in a zero-shot manner.
LLMs are susceptible to jailbreak attacks and can be manipulated to produce harmful outputs.
arXiv Detail & Related papers (2024-06-13T17:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.