Attention Eclipse: Manipulating Attention to Bypass LLM Safety-Alignment
- URL: http://arxiv.org/abs/2502.15334v1
- Date: Fri, 21 Feb 2025 09:38:00 GMT
- Title: Attention Eclipse: Manipulating Attention to Bypass LLM Safety-Alignment
- Authors: Pedram Zaree, Md Abdullah Al Mamun, Quazi Mishkatul Alam, Yue Dong, Ihsen Alouani, Nael Abu-Ghazaleh,
- Abstract summary: It is important to anticipate the range of potential Jailbreak attacks to guide effective defenses and accurate assessment of model safety.<n>We present a new approach for generating highly effective Jailbreak attacks that manipulate the attention of the model to selectively strengthen or weaken attention among different parts of the prompt.
- Score: 5.552439217633078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has shown that carefully crafted jailbreak inputs can induce large language models to produce harmful outputs, despite safety measures such as alignment. It is important to anticipate the range of potential Jailbreak attacks to guide effective defenses and accurate assessment of model safety. In this paper, we present a new approach for generating highly effective Jailbreak attacks that manipulate the attention of the model to selectively strengthen or weaken attention among different parts of the prompt. By harnessing attention loss, we develop more effective jailbreak attacks, that are also transferrable. The attacks amplify the success rate of existing Jailbreak algorithms including GCG, AutoDAN, and ReNeLLM, while lowering their generation cost (for example, the amplified GCG attack achieves 91.2% ASR, vs. 67.9% for the original attack on Llama2-7B/AdvBench, using less than a third of the generation time).
Related papers
- DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification [18.006622965818856]
We introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs.
Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks.
During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens.
arXiv Detail & Related papers (2025-04-18T09:02:12Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - JailPO: A Novel Black-box Jailbreak Framework via Preference Optimization against Aligned LLMs [11.924542310342282]
We present JailPO, a novel black-box jailbreak framework to examine Large Language Models (LLMs) alignment.<n>For scalability and universality, JailPO meticulously trains attack models to automatically generate covert jailbreak prompts.<n>We also introduce a preference optimization-based attack method to enhance the jailbreak effectiveness.
arXiv Detail & Related papers (2024-12-20T07:29:10Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, MLLMs remain vulnerable to jailbreak attacks.<n>We propose Immune, an inference-time defense framework that leverages a safe reward model to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.<n>It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.<n>Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - AttnGCG: Enhancing Jailbreaking Attacks on LLMs with Attention Manipulation [42.797865918373326]
We study the vulnerabilities of transformer-based Large Language Models (LLMs) to jailbreaking attacks.
We introduce an enhanced method that manipulates models' attention scores to facilitate jailbreaking.
Our strategy also demonstrates robust attack transferability against both unseen harmful goals and black-box LLMs.
arXiv Detail & Related papers (2024-10-11T17:55:09Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Robust Prompt Optimization for Defending Language Models Against Jailbreaking Attacks [17.22989422489567]
Large language models (LLMs) are vulnerable to adversarial attacks or jailbreaking.
We propose an optimization-based objective for defending LLMs against jailbreaking attacks and an algorithm to create robust system-level defenses.
Our results show improved robustness to both jailbreaks seen during optimization and unknown jailbreaks, reducing the attack success rate (ASR) on GPT-4 to 6% and Llama-2 to 0% on JailbreakBench.
arXiv Detail & Related papers (2024-01-30T18:56:08Z) - Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization [98.18718484152595]
We propose to integrate goal prioritization at both training and inference stages to counteract the intrinsic conflict between the goals of being helpful and ensuring safety.
Our work thus contributes to the comprehension of jailbreaking attacks and defenses, and sheds light on the relationship between LLMs' capability and safety.
arXiv Detail & Related papers (2023-11-15T16:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.