Causal prediction models for medication safety monitoring: The diagnosis
of vancomycin-induced acute kidney injury
- URL: http://arxiv.org/abs/2311.09137v1
- Date: Wed, 15 Nov 2023 17:29:24 GMT
- Title: Causal prediction models for medication safety monitoring: The diagnosis
of vancomycin-induced acute kidney injury
- Authors: Izak Yasrebi-de Kom, Joanna Klopotowska, Dave Dongelmans, Nicolette De
Keizer, Kitty Jager, Ameen Abu-Hanna, Giovanni Cin\`a
- Abstract summary: Current best practice for the retrospective diagnosis of adverse drug events (ADEs) in hospitalized patients relies on a full patient chart review and a formal causality assessment by medical experts.
Here, we pioneer a causal modeling approach using observational data to estimate a lower bound of the probability of causation (PC)
We apply our method to the clinically relevant use-case of vancomycin-induced acute kidney injury in intensive care patients.
- Score: 0.282736966249181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current best practice approach for the retrospective diagnosis of adverse
drug events (ADEs) in hospitalized patients relies on a full patient chart
review and a formal causality assessment by multiple medical experts. This
evaluation serves to qualitatively estimate the probability of causation (PC);
the probability that a drug was a necessary cause of an adverse event. This
practice is manual, resource intensive and prone to human biases, and may thus
benefit from data-driven decision support. Here, we pioneer a causal modeling
approach using observational data to estimate a lower bound of the PC
(PC$_{low}$). This method includes two key causal inference components: (1) the
target trial emulation framework and (2) estimation of individualized treatment
effects using machine learning. We apply our method to the clinically relevant
use-case of vancomycin-induced acute kidney injury in intensive care patients,
and compare our causal model-based PC$_{low}$ estimates to qualitative
estimates of the PC provided by a medical expert. Important limitations and
potential improvements are discussed, and we conclude that future improved
causal models could provide essential data-driven support for medication safety
monitoring in hospitalized patients.
Related papers
- Causal machine learning for predicting treatment outcomes [75.13093479526151]
Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes.
Key benefit of causal ML is that it allows for estimating individualized treatment effects.
arXiv Detail & Related papers (2024-10-11T12:39:08Z) - Ethical considerations of use of hold-out sets in clinical prediction model management [0.4194295877935868]
We focus on the ethical principles of beneficence, non-maleficence, autonomy and justice.
We also discuss statistical issues arising from different hold-out set sampling methods.
arXiv Detail & Related papers (2024-06-05T11:42:46Z) - Enhancing Acute Kidney Injury Prediction through Integration of Drug
Features in Intensive Care Units [0.0]
The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs has yet to be explored in the critical care setting.
This study proposes a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction.
arXiv Detail & Related papers (2024-01-09T05:42:32Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Prediction of drug effectiveness in rheumatoid arthritis patients based
on machine learning algorithms [2.5759046095742453]
Rheumatoid arthritis (RA) is an autoimmune condition caused when patients' immune system mistakenly targets their own tissue.
Machine learning (ML) has the potential to identify patterns in patient electronic health records to forecast the best clinical treatment to improve patient outcomes.
This study introduced a Drug Response Prediction (TNF) framework with two main goals: 1) design a data processing pipeline to extract information from clinical data, and then preprocess it for functional use, and 2) predict RA patient's responses to drugs and evaluate classification models' performance.
arXiv Detail & Related papers (2022-10-14T15:15:37Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Reinforcement learning and Bayesian data assimilation for model-informed
precision dosing in oncology [0.0]
Current strategies comprise model-informed dosing tables or are based on maximum a-posteriori estimates.
We propose three novel approaches for MIPD employing Bayesian data assimilation and/or reinforcement learning to control neutropenia.
These approaches have the potential to substantially reduce the incidence of life-threatening grade 4 and subtherapeutic grade 0 neutropenia.
arXiv Detail & Related papers (2020-06-01T16:38:27Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.