論文の概要: Large Language Model Inference with Lexical Shortlisting
- arxiv url: http://arxiv.org/abs/2311.09709v1
- Date: Thu, 16 Nov 2023 09:35:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 15:19:49.343674
- Title: Large Language Model Inference with Lexical Shortlisting
- Title(参考訳): 語彙ショートリストを用いた大規模言語モデル推論
- Authors: Nikolay Bogoychev, Pinzhen Chen, Barry Haddow, Alexandra Birch
- Abstract要約: 大規模言語モデル(LLM)の推論は計算とメモリ集約であり、語彙的ショートリストに適応する。
Unicodeベースのスクリプトフィルタリングとコーパスベースの選択という,LLM推論時にサブ語彙をショートリスト化する2つのタスクについて検討する。
語彙的ショートリストは,一部のモデルのメモリ使用量を50%近く削減し,生成速度が25%向上することを示す。
- 参考スコア(独自算出の注目度): 80.46235795566183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model (LLM) inference is computation and memory intensive, so
we adapt lexical shortlisting to it hoping to improve both. While lexical
shortlisting is well-explored in tasks like machine translation, it requires
modifications before being suitable for LLMs as the intended applications vary
significantly. Our work studies two heuristics to shortlist sub-vocabulary at
LLM inference time: Unicode-based script filtering and corpus-based selection.
We explore different LLM families and sizes, and we find that lexical
shortlisting can reduce the memory usage of some models by nearly 50\% and has
an upper bound of 25\% improvement in generation speed. In this pilot study, we
also identify the drawbacks of such vocabulary selection methods and propose
avenues for future research.
- Abstract(参考訳): 大規模言語モデル(llm)の推論は計算とメモリ集約であるため、両方の改善を期待する語彙的ショートリストをそれに適合させます。
語彙的ショートリストは機械翻訳のようなタスクでよく研究されているが、意図された用途が異なるため、LLMに適合する前に修正が必要である。
我々の研究は、LLM推論時間におけるサブ語彙をショートリスト化する2つのヒューリスティックス:Unicodeベースのスクリプトフィルタリングとコーパスベースの選択について研究している。
我々は、異なるllmファミリーとサイズを調査し、辞書的ショートリストにより、いくつかのモデルのメモリ使用量を約50\%削減し、世代速度を25\%向上させることができることを見出した。
本実験では,このような語彙選択手法の欠点を特定し,今後の研究への道筋を提案する。
関連論文リスト
- Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages [10.418542753869433]
低リソース言語(LRL)は、限られたデータのために自然言語処理(NLP)において重大な課題に直面している。
現在の最先端の大規模言語モデル(LLM)は、まだLRLと競合している。
mBERTやXLM-Rのような小さなマルチリンガルモデル(mLM)は、トレーニングデータサイズに適合する能力が向上するため、より有望である。
論文 参考訳(メタデータ) (2025-02-14T13:10:39Z) - Franken-Adapter: Cross-Lingual Adaptation of LLMs by Embedding Surgery [31.516243610548635]
我々は,デコーダのみの大規模言語モデルに対するモジュール型言語適応アプローチであるtextitFranken-Adapter$を提示する。
提案手法は,対象言語用にカスタマイズされた語彙を作成し,多言語データへの組込みによる言語適応を行うことから始める。
最大27Bパラメータを持つ$ttGemma2$モデルの実験では、96言語で最大20%の改善が示され、識別的タスクと生成的タスクの両方にまたがっている。
論文 参考訳(メタデータ) (2025-02-12T00:38:11Z) - Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
大規模言語モデル(LLM)は、プログラミング言語の構文、意味論、使用パターンを学ぶために、大規模で多様なデータセットに依存している。
低リソース言語では、そのようなデータの限られた可用性は、モデルを効果的に一般化する能力を損なう。
本稿では,低リソース言語におけるLLMの性能向上のためのいくつかの手法の有効性を実証研究する。
論文 参考訳(メタデータ) (2025-01-31T12:23:28Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。