論文の概要: Redefining Super-Resolution: Fine-mesh PDE predictions without classical
simulations
- arxiv url: http://arxiv.org/abs/2311.09740v3
- Date: Mon, 27 Nov 2023 03:09:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 11:49:03.621487
- Title: Redefining Super-Resolution: Fine-mesh PDE predictions without classical
simulations
- Title(参考訳): 超解法の再定義:古典的シミュレーションを伴わないPDE予測
- Authors: Rajat Kumar Sarkar, Ritam Majumdar, Vishal Jadhav, Sagar Srinivas
Sakhinana, Venkataramana Runkana
- Abstract要約: PDEに基づく問題に適した超解像の新たな定義を提案する。
我々は、粗いグリッドシミュレーションデータを入力として使用し、詳細なグリッドシミュレーション結果を予測する。
本手法は,従来のシミュレーションを通したファイン・メッシュ・ソリューションの生成を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In Computational Fluid Dynamics (CFD), coarse mesh simulations offer
computational efficiency but often lack precision. Applying conventional
super-resolution to these simulations poses a significant challenge due to the
fundamental contrast between downsampling high-resolution images and
authentically emulating low-resolution physics. The former method conserves
more of the underlying physics, surpassing the usual constraints of real-world
scenarios. We propose a novel definition of super-resolution tailored for
PDE-based problems. Instead of simply downsampling from a high-resolution
dataset, we use coarse-grid simulated data as our input and predict fine-grid
simulated outcomes. Employing a physics-infused UNet upscaling method, we
demonstrate its efficacy across various 2D-CFD problems such as discontinuity
detection in Burger's equation, Methane combustion, and fouling in Industrial
heat exchangers. Our method enables the generation of fine-mesh solutions
bypassing traditional simulation, ensuring considerable computational saving
and fidelity to the original ground truth outcomes. Through diverse boundary
conditions during training, we further establish the robustness of our method,
paving the way for its broad applications in engineering and scientific CFD
solvers.
- Abstract(参考訳): 計算流体力学(CFD)では、粗いメッシュシミュレーションは計算効率を提供するが、精度は低いことが多い。
これらのシミュレーションに従来の超解像を適用することは、高分解能画像のダウンサンプリングと低分解能物理のオーステンシャルエミュレーションの基本的なコントラストのために大きな課題となる。
前者の手法は、現実のシナリオの通常の制約を超越して、基礎となる物理学をより保存する。
PDEに基づく問題に適した超解像の新たな定義を提案する。
高解像度データセットから単純にサンプリングする代わりに、粗いグリッドシミュレーションデータを入力として使用し、細粒度シミュレーション結果を予測する。
物理拡散型UNetアップスケーリング法を用いて,バーガー方程式の不連続検出,メタン燃焼,産業熱交換器のファウリングなど,様々な2次元CFD問題に対して有効性を示す。
提案手法は,従来のシミュレーションを通過させることで,基礎となる真理結果に対する計算的保存と忠実性の確保を可能にする。
トレーニング中の境界条件の多様さにより,本手法の堅牢性をさらに確立し,工学および科学的CFD解法における幅広い応用の道を開く。
関連論文リスト
- Text2PDE: Latent Diffusion Models for Accessible Physics Simulation [7.16525545814044]
物理シミュレーションに潜時拡散モデルを適用する方法をいくつか紹介する。
提案手法は、現在のニューラルPDEソルバと、精度と効率の両面で競合することを示す。
スケーラブルで正確で使用可能な物理シミュレータを導入することで、ニューラルPDEソルバを実用化に近づけたいと思っています。
論文 参考訳(メタデータ) (2024-10-02T01:09:47Z) - Accelerating Simulation of Two-Phase Flows with Neural PDE Surrogates [3.909855210960908]
二相流問題のスケーリングシミュレーションを支援するツールとして,ニューラルPDEソルバを検討・拡張する。
この問題に対する既存の数値解法を、領域の様々な測度を含むより複雑な設定に拡張する。
その結果,最大3桁の速さで液滴力学を正確にモデル化できることがわかった。
論文 参考訳(メタデータ) (2024-05-27T15:18:12Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
PHYRECONは、微分可能なレンダリングと微分可能な物理シミュレーションの両方を利用して暗黙的な表面表現を学習する最初のアプローチである。
この設計の中心は、SDFに基づく暗黙の表現と明示的な表面点の間の効率的な変換である。
また,物理シミュレータの安定性も向上し,全データセットに対して少なくとも40%の改善が得られた。
論文 参考訳(メタデータ) (2024-04-25T15:06:58Z) - PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
高分解能CFDシミュレーションは流体挙動や流れパターンに関する貴重な洞察を提供する。
解像度が大きくなると、計算データ要求と時間の増加が比例する。
複雑な流体の流れを学習し,シミュレーションを直接予測するメッシュ非依存のネットワークであるPointSAGEを提案する。
論文 参考訳(メタデータ) (2024-04-06T12:49:09Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Machine Learning-Accelerated Computational Solid Mechanics: Application
to Linear Elasticity [0.0]
我々は、高解像度ラベル付きデータを用いることなく、物理系の支配方程式と境界条件を利用してモデルを訓練する。
超解場は、粗いメッシュ解像度の400倍の精度で進行数値計算器の精度と一致することを示した。
論文 参考訳(メタデータ) (2021-12-16T07:39:50Z) - Using Machine Learning to Augment Coarse-Grid Computational Fluid
Dynamics Simulations [2.7892067588273517]
本研究では,高レイノルズ数での乱流の粗いグリッドシミュレーションにより発生する数値誤差を補正する機械学習(ML)手法を提案する。
提案手法は,高分解能な解軌道を得ることができるML-PDEハイブリッド解法である。
論文 参考訳(メタデータ) (2020-09-30T19:29:21Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。