論文の概要: Machine Learning-Accelerated Computational Solid Mechanics: Application
to Linear Elasticity
- arxiv url: http://arxiv.org/abs/2112.08676v1
- Date: Thu, 16 Dec 2021 07:39:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-18 02:10:09.867851
- Title: Machine Learning-Accelerated Computational Solid Mechanics: Application
to Linear Elasticity
- Title(参考訳): 機械学習による計算ソリッドメカニクスの線形弾性への応用
- Authors: Rajat Arora
- Abstract要約: 我々は、高解像度ラベル付きデータを用いることなく、物理系の支配方程式と境界条件を利用してモデルを訓練する。
超解場は、粗いメッシュ解像度の400倍の精度で進行数値計算器の精度と一致することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a novel physics-informed deep learning based
super-resolution framework to reconstruct high-resolution deformation fields
from low-resolution counterparts, obtained from coarse mesh simulations or
experiments. We leverage the governing equations and boundary conditions of the
physical system to train the model without using any high-resolution labeled
data. The proposed approach is applied to obtain the super-resolved deformation
fields from the low-resolution stress and displacement fields obtained by
running simulations on a coarse mesh for a body undergoing linear elastic
deformation. We demonstrate that the super-resolved fields match the accuracy
of an advanced numerical solver running at 400 times the coarse mesh
resolution, while simultaneously satisfying the governing laws. A brief
evaluation study comparing the performance of two deep learning based
super-resolution architectures is also presented.
- Abstract(参考訳): 本研究は、粗いメッシュシミュレーションや実験から得られた低分解能変形場から高分解能変形場を再構成する物理インフォームド深層学習に基づく新しい超解像フレームワークを提案する。
物理系の制御方程式と境界条件を利用して高解像度ラベル付きデータを使わずにモデルを訓練する。
線形弾性変形を受ける物体の粗いメッシュ上での走行シミュレーションにより得られた低分解能応力および変位場から超解像変形場を得るため,提案手法を適用した。
超解場は,400倍の粗いメッシュ分解能を有する高度数値解法の精度に一致し,同時に法則を満足することを示した。
また,2つの深層学習に基づく超解像アーキテクチャの性能を比較検討した。
関連論文リスト
- Redefining Super-Resolution: Fine-mesh PDE predictions without classical
simulations [0.0]
PDEに基づく問題に適した超解像の新たな定義を提案する。
我々は、粗いグリッドシミュレーションデータを入力として使用し、詳細なグリッドシミュレーション結果を予測する。
本手法は,従来のシミュレーションを通したファイン・メッシュ・ソリューションの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-16T10:13:09Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - PhySRNet: Physics informed super-resolution network for application in
computational solid mechanics [0.0]
本研究は,物理インフォームド深層学習に基づく超解像フレームワーク(PhySRNet)の開発を目的とする。
高分解能ラベル付きデータを必要とせずに、高分解能変形場を低分解能変形体から復元することができる。
論文 参考訳(メタデータ) (2022-06-30T17:51:50Z) - Calibrating constitutive models with full-field data via physics
informed neural networks [0.0]
実フィールド変位データに基づくモデルパラメータ化の発見のための物理インフォームド深層学習フレームワークを提案する。
我々は、ニューラルネットワークの予測に物理的な制約を課すために、強い形式ではなく、支配方程式の弱い形式で作業する。
我々は、インフォメーション機械学習が実現可能な技術であり、モデルのキャリブレーションにフルフィールド実験データをどのように利用するかというパラダイムを変える可能性があることを実証した。
論文 参考訳(メタデータ) (2022-03-30T18:07:44Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
データ駆動手法を用いて超弾性材料をシミュレートする手法を提案する。
ニューラルネットワークは、境界条件と結果の変位場との間の非線形関係を学習するために訓練される。
その結果, 限られたデータ量でトレーニングしたネットワークアーキテクチャは, 1ミリ秒未満で変位場を予測できることがわかった。
論文 参考訳(メタデータ) (2021-09-17T12:15:47Z) - The Neural Network shifted-Proper Orthogonal Decomposition: a Machine
Learning Approach for Non-linear Reduction of Hyperbolic Equations [0.0]
本研究では,統計的学習フレームワークにおいて,正しい前処理変換を自動的に検出する問題にアプローチする。
純粋にデータ駆動方式により、線形部分空間操作の既存のアプローチを未知の対流場を持つ非線形双曲問題に一般化することができる。
提案アルゴリズムは、その性能をベンチマークするために単純なテストケースに対して検証され、その後、多相シミュレーションに成功している。
論文 参考訳(メタデータ) (2021-08-14T15:13:35Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
マルコフ決定過程としてのAMRの新規な定式化を提案し,シミュレーションから直接改良政策を訓練するために深部強化学習を適用した。
これらのポリシーアーキテクチャのモデルサイズはメッシュサイズに依存しないため、任意に大きく複雑なシミュレーションにスケールします。
論文 参考訳(メタデータ) (2021-03-01T22:55:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。