論文の概要: Intelligent Generation of Graphical Game Assets: A Conceptual Framework
and Systematic Review of the State of the Art
- arxiv url: http://arxiv.org/abs/2311.10129v1
- Date: Thu, 16 Nov 2023 18:36:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 15:54:14.285630
- Title: Intelligent Generation of Graphical Game Assets: A Conceptual Framework
and Systematic Review of the State of the Art
- Title(参考訳): グラフィックゲームアセットのインテリジェント生成:概念的枠組みと最先端の体系的レビュー
- Authors: Kaisei Fukaya, Damon Daylamani-Zad, Harry Agius
- Abstract要約: 手続き的コンテンツ生成は、物語、レベル、音から木や武器まで、ゲームにおける様々なタスクに適用することができる。
本稿では,ゲーム内外の幅広いアプリケーションからの研究を通じて,グラフィカルアセット生成への最先端のアプローチについて検討する。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Procedural content generation (PCG) can be applied to a wide variety of tasks
in games, from narratives, levels and sounds, to trees and weapons. A large
amount of game content is comprised of graphical assets, such as clouds,
buildings or vegetation, that do not require gameplay function considerations.
There is also a breadth of literature examining the procedural generation of
such elements for purposes outside of games. The body of research, focused on
specific methods for generating specific assets, provides a narrow view of the
available possibilities. Hence, it is difficult to have a clear picture of all
approaches and possibilities, with no guide for interested parties to discover
possible methods and approaches for their needs, and no facility to guide them
through each technique or approach to map out the process of using them.
Therefore, a systematic literature review has been conducted, yielding 200
accepted papers. This paper explores state-of-the-art approaches to graphical
asset generation, examining research from a wide range of applications, inside
and outside of games. Informed by the literature, a conceptual framework has
been derived to address the aforementioned gaps.
- Abstract(参考訳): 手続き的コンテンツ生成(PCG)は、物語、レベル、音から木や武器まで、ゲーム内の様々なタスクに適用することができる。
大量のゲームコンテンツは、クラウド、建物、植生などのグラフィカルな資産で構成されており、ゲームプレイ機能の考慮を必要としない。
ゲーム以外の目的のために、そのような要素の手続き的生成を調べる文献も数多く存在する。
特定の資産を生成する特定の方法に焦点を当てた研究機関は、利用可能な可能性の狭義の見解を提供する。
したがって、すべてのアプローチや可能性を明確に把握することは困難であり、関係者がニーズに対して可能な方法やアプローチを発見するためのガイドや、それらを使用するプロセスをマップアウトするための各テクニックやアプローチを通じてそれらをガイドする機能がない。
そのため、体系的な文献レビューが行われ、200の論文が受け入れられている。
本稿では,ゲーム内外の幅広いアプリケーションからの研究を通して,グラフィカルアセット生成に対する最先端のアプローチについて検討する。
文献から、上記のギャップに対処するための概念的枠組みが導出されている。
関連論文リスト
- Pixels to Prose: Understanding the art of Image Captioning [1.9635669040319872]
画像キャプションにより、機械は視覚的コンテンツを解釈し、記述的なテキストを生成することができる。
レビューでは、画像キャプションモデルの進化を最新の最先端ソリューションに遡る。
医療領域における画像キャプションの適用についても検討した。
論文 参考訳(メタデータ) (2024-08-28T11:21:23Z) - A Comprehensive Survey of 3D Dense Captioning: Localizing and Describing
Objects in 3D Scenes [80.20670062509723]
3Dシークエンスキャプションは、3Dシーンの詳細な説明を作成することを目的とした、視覚言語によるブリッジングタスクである。
2次元の視覚的キャプションと比較して、現実世界の表現が密接なため、大きな可能性と課題が提示される。
既存手法の人気と成功にもかかわらず、この分野の進歩を要約した総合的な調査は乏しい。
論文 参考訳(メタデータ) (2024-03-12T10:04:08Z) - Panel Transitions for Genre Analysis in Visual Narratives [1.320904960556043]
本稿では,漫画や漫画風のビジュアル・ナラティブに基づくジャンルのマルチモーダル分析を行うための新しいアプローチを提案する。
我々は、主観的ラベルをモデル化する際の既存の計算手法の限界と課題を強調した。
論文 参考訳(メタデータ) (2023-12-14T08:05:09Z) - Vision-Language Pre-training: Basics, Recent Advances, and Future Trends [158.34830433299268]
近年,マルチモーダルインテリジェンスのための視覚言語事前学習法が開発されている。
各カテゴリについて、最先端の手法の総合的なレビューを行い、現在進行中の進歩と課題について論じる。
また,研究コミュニティにおいて,大規模基盤モデル,統合モデリング,文脈内数発の学習,知識,堅牢性,コンピュータビジョンなど,高度なトピックが積極的に検討されていることについても論じる。
論文 参考訳(メタデータ) (2022-10-17T17:11:36Z) - Mapping Research Trajectories [0.0]
本稿では, あらゆる科学分野に適用可能な, 研究軌道のエンハンマッピングに関する原則的アプローチを提案する。
われわれの視覚化は、時間とともに実体の研究トピックを、直接的に相互に表現している。
実践的な実証アプリケーションでは、機械学習による出版コーパスに対する提案されたアプローチを例示する。
論文 参考訳(メタデータ) (2022-04-25T13:32:39Z) - Automatic Image Content Extraction: Operationalizing Machine Learning in
Humanistic Photographic Studies of Large Visual Archives [81.88384269259706]
本稿では,機械学習による大規模画像アーカイブの検索と解析のための自動画像コンテンツ抽出フレームワークを提案する。
提案する枠組みは、人文科学と社会科学のいくつかの分野に適用できる。
論文 参考訳(メタデータ) (2022-04-05T12:19:24Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
Curiosity-Conditioned Proximal Trajectories (CCPT)法は、好奇心と模倣学習を組み合わせてエージェントを訓練して探索する。
CCPTが複雑な環境を探索し、ゲームプレイの問題を発見し、その過程におけるデザインの監視を行い、それらをゲームデザイナーに直接認識し、強調する方法について説明する。
論文 参考訳(メタデータ) (2022-02-21T09:08:33Z) - Deep learning for video game genre classification [2.66512000865131]
本稿では,この問題を解決するためのマルチモーダルディープラーニングフレームワークを提案する。
我々は、画像、記述テキスト、タイトルテキスト、ジャンル情報を含む21のジャンルから5万のビデオゲームからなる大規模なデータセットをコンパイルする。
その結果、マルチモーダルフレームワークは現在の最先端の画像ベースモデルやテキストベースモデルよりも優れていた。
論文 参考訳(メタデータ) (2020-11-21T22:31:43Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースゲームの強化学習について検討する。
エージェントの動作が解釈可能な推論手順によって生成され、支援されるように、意思決定のための知識グラフを用いた明示的な推論を行うことを目指している。
提案手法を多数の人為的ベンチマークゲームで広範囲に評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-10-22T12:40:22Z) - Image Segmentation Using Deep Learning: A Survey [58.37211170954998]
イメージセグメンテーションは、画像処理とコンピュータビジョンにおいて重要なトピックである。
深層学習モデルを用いた画像セグメンテーション手法の開発を目的とした研究が,これまでに数多く行われている。
論文 参考訳(メタデータ) (2020-01-15T21:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。