Dates Fruit Disease Recognition using Machine Learning
- URL: http://arxiv.org/abs/2311.10365v2
- Date: Mon, 13 May 2024 06:51:09 GMT
- Title: Dates Fruit Disease Recognition using Machine Learning
- Authors: Ghassen Ben Brahim, Jaafar Alghazo, Ghazanfar Latif, Khalid Alnujaidi,
- Abstract summary: A dataset was developed consisting of 871 images divided into the following classes; Healthy date, Initial stage of disease, Malnourished date, and Parasite infected.
The highest average accuracy was achieved when combining the L*a*b, Statistical, and DWT Features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many countries such as Saudi Arabia, Morocco and Tunisia are among the top exporters and consumers of palm date fruits. Date fruit production plays a major role in the economies of the date fruit exporting countries. Date fruits are susceptible to disease just like any fruit and early detection and intervention can end up saving the produce. However, with the vast farming lands, it is nearly impossible for farmers to observe date trees on a frequent basis for early disease detection. In addition, even with human observation the process is prone to human error and increases the date fruit cost. With the recent advances in computer vision, machine learning, drone technology, and other technologies; an integrated solution can be proposed for the automatic detection of date fruit disease. In this paper, a hybrid features based method with the standard classifiers is proposed based on the extraction of L*a*b color features, statistical features, and Discrete Wavelet Transform (DWT) texture features for the early detection and classification of date fruit disease. A dataset was developed for this work consisting of 871 images divided into the following classes; Healthy date, Initial stage of disease, Malnourished date, and Parasite infected. The extracted features were input to common classifiers such as the Random Forest (RF), Multilayer Perceptron (MLP), Na\"ive Bayes (NB), and Fuzzy Decision Trees (FDT). The highest average accuracy was achieved when combining the L*a*b, Statistical, and DWT Features.
Related papers
- MetaFruit Meets Foundation Models: Leveraging a Comprehensive Multi-Fruit Dataset for Advancing Agricultural Foundation Models [10.11552909915055]
We introduce MetaFruit, the largest publicly available multi-class fruit dataset, comprising 4,248 images and 248,015 manually labeled instances.
This study proposes an innovative open-set fruit detection system leveraging advanced Vision Foundation Models (VFMs) for fruit detection.
arXiv Detail & Related papers (2024-05-14T00:13:47Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Fruit Ripeness Classification: a Survey [59.11160990637616]
Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded.
Machine learning and deep learning techniques dominate the top-performing methods.
Deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features.
arXiv Detail & Related papers (2022-12-29T19:32:20Z) - An Ensemble of Convolutional Neural Networks to Detect Foliar Diseases
in Apple Plants [0.0]
Apple diseases, if not diagnosed early, can lead to massive resource loss and pose a serious threat to humans and animals who consume the infected apples.
Our work proposes an ensembled system of Xception, InceptionResNet, and MobileNet architectures to detect 5 different types of apple plant diseases.
The system has achieved outstanding results in multi-class and multi-label classification and can be used in a real-time setting to monitor large apple plantations.
arXiv Detail & Related papers (2022-10-01T15:40:04Z) - Facilitated machine learning for image-based fruit quality assessment in
developing countries [68.8204255655161]
Automated image classification is a common task for supervised machine learning in food science.
We propose an alternative method based on pre-trained vision transformers (ViTs)
It can be easily implemented with limited resources on a standard device.
arXiv Detail & Related papers (2022-07-10T19:52:20Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z) - A Deep Learning-based Detector for Brown Spot Disease in Passion Fruit
Plant Leaves [0.5485240256788552]
This work focuses on two major diseases woodiness (viral) and brown spot (fungal) diseases.
We have partnered with the Uganda National Crop Research Institute (NaCRRI) to develop a dataset of expertly labelled passion fruit plant leaves and fruits.
arXiv Detail & Related papers (2020-07-28T10:17:43Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
Apple orchards in the U.S. are under constant threat from a large number of pathogens and insects. Appropriate and timely deployment of disease management depends on early disease detection.
We have manually captured 3,651 high-quality, real-life symptom images of multiple apple foliar diseases.
A subset, expert-annotated to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves, was made available to the Kaggle community for 'Plant Pathology Challenge'
arXiv Detail & Related papers (2020-04-24T19:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.