論文の概要: Automatic Smart Contract Comment Generation via Large Language Models
and In-Context Learning
- arxiv url: http://arxiv.org/abs/2311.10388v1
- Date: Fri, 17 Nov 2023 08:31:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-21 17:31:07.339824
- Title: Automatic Smart Contract Comment Generation via Large Language Models
and In-Context Learning
- Title(参考訳): 大規模言語モデルによるスマートコントラクトの自動コメント生成と文脈内学習
- Authors: Junjie Zhao and Xiang Chen and Guang Yang and Yiheng Shen
- Abstract要約: 本研究では,大規模言語モデル(LLM)と文脈内学習に基づくSCCLLMのアプローチを提案する。
具体的には、デモ選択フェーズにおいて、SCCLLMは歴史的コーパスからトップkコードスニペットを検索する。
コンテキスト内学習フェーズでは、SCCLLMは検索したコードスニペットをデモとして利用する。
- 参考スコア(独自算出の注目度): 11.52122354673779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The previous smart contract code comment (SCC) generation approaches can be
divided into two categories: fine-tuning paradigm-based approaches and
information retrieval-based approaches. However, for the fine-tuning
paradigm-based approaches, the performance may be limited by the quality of the
gathered dataset for the downstream task and they may have knowledge-forgetting
issues. While for the information retrieval-based approaches, it is difficult
for them to generate high-quality comments if similar code does not exist in
the historical repository. Therefore we want to utilize the domain knowledge
related to SCC generation in large language models (LLMs) to alleviate the
disadvantages of these two types of approaches. In this study, we propose an
approach SCCLLM based on LLMs and in-context learning. Specifically, in the
demonstration selection phase, SCCLLM retrieves the top-k code snippets from
the historical corpus by considering syntax, semantics, and lexical
information. In the in-context learning phase, SCCLLM utilizes the retrieved
code snippets as demonstrations, which can help to utilize the related
knowledge for this task. We select a large corpus from a smart contract
community Etherscan.io as our experimental subject. Extensive experimental
results show the effectiveness of SCCLLM when compared with baselines in
automatic evaluation and human evaluation.
- Abstract(参考訳): これまでのスマートコントラクトコードコメント(SCC)生成アプローチは、微調整パラダイムベースのアプローチと情報検索ベースのアプローチの2つのカテゴリに分けられる。
しかしながら、微調整パラダイムに基づくアプローチでは、ダウンストリームタスクのために収集されたデータセットの品質によってパフォーマンスが制限される可能性がある。
情報検索に基づくアプローチでは、履歴リポジトリに類似のコードが存在しない場合、高品質なコメントを生成することは困難である。
そこで我々は,大規模言語モデル(LLM)におけるSCC生成に関するドメイン知識を活用して,これらの2種類のアプローチの欠点を軽減する。
本研究では,LLMと文脈内学習に基づくSCCLLMのアプローチを提案する。
具体的には、デモ選択フェーズにおいて、scllmは構文、意味論、語彙情報を考慮して履歴コーパスからトップkコードスニペットを取得する。
コンテキスト内学習の段階では、SCCLLMは検索したコードスニペットをデモとして利用し、このタスクに関連する知識を活用するのに役立つ。
スマートコントラクトコミュニティであるEtherscan.ioの大規模なコーパスを実験対象として選択する。
SCCLLMは, 自動評価および人的評価において, ベースラインと比較して有効であった。
関連論文リスト
- Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
大規模言語モデル(LLM)は、コンテキスト内学習(ICL)を通じて、様々なタスクで優れる
In-Context Contrastive Decoding (ICCD)を導入する。
ICCDは、正と負のインコンテキストの例の出力分布を対比することで、入力ラベルマッピングを強調する。
論文 参考訳(メタデータ) (2025-02-19T14:04:46Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - ConVerSum: A Contrastive Learning-based Approach for Data-Scarce Solution of Cross-Lingual Summarization Beyond Direct Equivalents [4.029675201787349]
言語間の要約は自然言語処理の洗練された分野である。
高品質なCLSデータがない場合、CLSには実現可能な解決策がない。
コントラスト学習のパワーを活かしたCLSのための新しいデータ効率のアプローチであるConVerSumを提案する。
論文 参考訳(メタデータ) (2024-08-17T19:03:53Z) - TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation [16.93374578679005]
TokenRecは、大規模言語モデル(LLM)ベースのRecommender Systems(RecSys)のトークン化と検索のための新しいフレームワークである。
我々の戦略であるMasked Vector-Quantized (MQ) Tokenizerは、協調フィルタリングから学んだマスキングされたユーザ/イテム表現を離散トークンに定量化する。
我々の生成的検索パラダイムは,自動回帰復号処理やビーム検索処理の不要さを解消するために,ユーザに対してKドル以上のアイテムを効率的に推奨するように設計されている。
論文 参考訳(メタデータ) (2024-06-15T00:07:44Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Vocabulary-Defined Semantics: Latent Space Clustering for Improving In-Context Learning [32.178931149612644]
コンテキスト内学習により、言語モデルは下流のデータに適応したり、プロンプト内のデモとして少数のサンプルでタスクを組み込むことができる。
しかし、文脈内学習のパフォーマンスは、実演の質、形式、順序によって不安定である可能性がある。
語彙定義意味論(vocabulary-defined semantics)を提案する。
論文 参考訳(メタデータ) (2024-01-29T14:29:48Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
大規模言語モデル(LLM)は、コード生成において印象的なコンテキスト内学習(ICL)能力を示している。
コード生成のためのLAIL (LLM-Aware In-context Learning) という新しい学習ベース選択手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T06:12:58Z) - Large Language Models are Few-Shot Summarizers: Multi-Intent Comment
Generation via In-Context Learning [34.006227676170504]
本研究では,大規模言語モデル(LLM)を用いて,開発者の多様な意図を満たすコメントを生成することの実現可能性について検討する。
2つの大規模なデータセットの実験は、私たちの洞察の理論的根拠を示しています。
論文 参考訳(メタデータ) (2023-04-22T12:26:24Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
大規模な事前学習言語モデル(LM)は、印象的なインコンテキスト学習(ICL)能力を示している。
本稿では,CEIL (Compositional Exemplars for In-context Learning) を提案する。
我々は、感情分析、パラフレーズ検出、自然言語推論、コモンセンス推論、オープンドメイン質問応答、コード生成、意味解析を含む7つの異なるNLPタスクから、CEILを12の分類および生成データセットで検証する。
論文 参考訳(メタデータ) (2023-02-11T14:02:08Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
本稿では,学習可能性を評価するためにCluster Learnability (CL)を導入する。
CLは、K-meansで表現をクラスタリングすることによって得られたラベルを予測するために訓練されたKNNのパフォーマンスで測定される。
CLは、他の競合する評価手法よりも分布内モデルの性能と相関することがわかった。
論文 参考訳(メタデータ) (2022-06-02T19:05:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。