Dimensional Crossover in a Quantum Gas of Light
- URL: http://arxiv.org/abs/2311.10485v2
- Date: Tue, 16 Jan 2024 14:32:21 GMT
- Title: Dimensional Crossover in a Quantum Gas of Light
- Authors: Kirankumar Karkihalli Umesh, Julian Schulz, Julian Schmitt, Martin
Weitz, Georg von Freymann, Frank Vewinger
- Abstract summary: In bosonic gases, Bose-Einstein condensation (BEC) in one dimension requires stronger confinement than in two dimensions.
We experimentally study the properties of a harmonically trapped photon gas undergoing BEC along the dimensional crossover from one to two dimensions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dimensionality of a system profoundly influences its physical behaviour,
leading to the emergence of different states of matter in many-body quantum
systems. In lower dimensions, fluctuations increase and lead to the suppression
of long-range order. For example, in bosonic gases, Bose-Einstein condensation
(BEC) in one dimension requires stronger confinement than in two dimensions. We
experimentally study the properties of a harmonically trapped photon gas
undergoing Bose-Einstein condensation along the dimensional crossover from one
to two dimensions. The photons are trapped in a dye microcavity where polymer
nanostructures provide the trapping potential for the photon gas. By varying
the aspect ratio of the harmonic trap, we tune from an isotropic
two-dimensional confinement to an anisotropic, highly elongated one-dimensional
trapping potential. Along this transition we determine the caloric properties
of the photon gas and find a softening of the second-order Bose-Einstein
condensation phase transition observed in two dimensions to a crossover
behaviour in one dimension.
Related papers
- Density-wave-type supersolid of two-dimensional tilted dipolar bosons [0.6562256987706128]
We predict a stable density-waves-type supersolid phase of a dilute gas of tilted dipolar bosons in a two-dimensional (2D) geometry.
This many-body phase is manifested by the formation of the stripe pattern and elasticity coexisting together with the Bose-Einstein condensation and superfluidity at zero temperature.
The predicted supersolid effect can be realized in a variety of experimental setups ranging from excitons in heterostructures to cold atoms and polar molecules in optical potentials.
arXiv Detail & Related papers (2023-12-04T08:15:03Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Dimensional crossover in self-organised super-radiant phases of ultra
cold atoms inside a cavity [0.0]
We consider a condensate of ultra cold bosonic atoms in a linear optical cavity illuminated by a two-pump configuration.
We show such configuration allows a smooth transition from a one-dimensional quantum optical lattice configuration to a two-dimensional quantum optical lattice configuration induced by the cavity-atom interaction.
arXiv Detail & Related papers (2022-06-09T14:08:23Z) - Compressibility and the Equation of State of an Optical Quantum Gas in a
Box [0.0]
We demonstrate a measurement of the compressibility of a two-dimensional quantum gas of light in a box potential.
We observe signatures of Bose-Einstein condensation at high phase-space densities in the finite-size system.
Strikingly, upon entering the quantum degenerate regime, the measured density response to an external force sharply increases.
arXiv Detail & Related papers (2021-12-23T18:59:50Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Observation of a non-Hermitian phase transition in an optical quantum
gas [0.0]
Quantum gases of light, as photons or polariton condensates in optical microcavities, are collective quantum systems.
We experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a new dissipative phase.
arXiv Detail & Related papers (2020-10-29T17:59:10Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z) - Photon-mediated Peierls Transition of a 1D Gas in a Multimode Optical
Cavity [0.0]
Peierls instability toward a charge density wave is a canonical example of phonon-driven strongly correlated physics.
We propose a method to realize an analogous photon-mediated Peierls transition, using a system of interacting Bose or Fermi atoms trapped inside a multimode confocal cavity.
arXiv Detail & Related papers (2020-02-27T17:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.