Efficient reconstruction, benchmarking and validation of cross-talk
models in readout noise in near-term quantum devices
- URL: http://arxiv.org/abs/2311.10661v1
- Date: Fri, 17 Nov 2023 17:33:29 GMT
- Title: Efficient reconstruction, benchmarking and validation of cross-talk
models in readout noise in near-term quantum devices
- Authors: Jan Tuziemski, Filip B. Maciejewski, Joanna Majsak, Oskar S{\l}owik,
Marcin Kotowski, Katarzyna Kowalczyk-Murynka, Piotr Podziemski, Micha\l\
Oszmaniec
- Abstract summary: We introduce an appropriately tailored quantum detector tomography protocol, which enables efficient characterization of $k-$local cross-talk effects in the readout noise.
We show that QDOT data provides information about suitably defined reduced POVM operators, correlations and coherences in the readout noise.
We apply our method to investigate cross-talk effects on 79 qubit Rigetti and 127 qubit IBM devices.
- Score: 3.1410859223862113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Readout errors contribute significantly to the overall noise affecting
present-day quantum computers. However, the complete characterization of
generic readout noise is infeasible for devices consisting of a large number of
qubits. Here we introduce an appropriately tailored quantum detector tomography
protocol, the so called Quantum Detector Overlapping Tomography, which enables
efficient characterization of $k-$local cross-talk effects in the readout noise
as the sample complexity of the protocol scales logarithmically with the total
number of qubits. We show that QDOT data provides information about suitably
defined reduced POVM operators, correlations and coherences in the readout
noise, as well as allows to reconstruct the correlated clusters and neighbours
readout noise model. Benchmarks are introduced to verify utility and accuracy
of the reconstructed model. We apply our method to investigate cross-talk
effects on 79 qubit Rigetti and 127 qubit IBM devices. We discuss their readout
noise characteristics, and demonstrate effectiveness of our approach by showing
superior performance of correlated clusters and neighbours over models without
cross-talk in model-based readout error mitigation applied to energy estimation
of MAX-2-SAT Hamiltonians, with the improvement on the order of 20% for both
devices.
Related papers
- Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Tensor network noise characterization for near-term quantum computers [0.5277756703318045]
We show how experimentally feasible tomographic samples are sufficient to accurately characterize realistic correlated noise models.
We combine this noise characterization method with a recently proposed noise-aware tensor network error mitigation protocol.
arXiv Detail & Related papers (2024-02-13T15:57:47Z) - Optimized Noise Suppression for Quantum Circuits [0.40964539027092917]
Crosstalk noise is a severe error source in, e.g., cross-resonance based superconducting quantum processors.
Intrepid programming algorithm extends previous work on optimized qubit routing by swap insertion.
We evaluate the proposed method by characterizing crosstalk noise for two chips with up to 127 qubits.
arXiv Detail & Related papers (2024-01-12T07:34:59Z) - Accurate and Honest Approximation of Correlated Qubit Noise [39.58317527488534]
We propose an efficient systematic construction of approximate noise channels, where their accuracy can be enhanced by incorporating noise components with higher qubit-qubit correlation degree.
We find that, for realistic noise strength typical for fixed-frequency superconducting qubits, correlated noise beyond two-qubit correlation can significantly affect the code simulation accuracy.
arXiv Detail & Related papers (2023-11-15T19:00:34Z) - Noisy Pair Corrector for Dense Retrieval [59.312376423104055]
We propose a novel approach called Noisy Pair Corrector (NPC)
NPC consists of a detection module and a correction module.
We conduct experiments on text-retrieval benchmarks Natural Question and TriviaQA, code-search benchmarks StaQC and SO-DS.
arXiv Detail & Related papers (2023-11-07T08:27:14Z) - Characterizing and mitigating coherent errors in a trapped ion quantum
processor using hidden inverses [0.20315704654772418]
Quantum computing testbeds exhibit high-fidelity quantum control over small collections of qubits.
These noisy intermediate-scale devices can support a sufficient number of sequential operations prior to decoherence.
While the results of these algorithms are imperfect, these imperfections can help bootstrap quantum computer testbed development.
arXiv Detail & Related papers (2022-05-27T20:35:24Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
Noise mitigation can be performed up to some error for which we derive upper bounds.
Experiments on 15 (23) qubits using IBM's devices to test both the noise model and the error-mitigation scheme.
We show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.
arXiv Detail & Related papers (2021-01-07T02:19:58Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - A deep learning model for noise prediction on near-term quantum devices [137.6408511310322]
We train a convolutional neural network on experimental data from a quantum device to learn a hardware-specific noise model.
A compiler then uses the trained network as a noise predictor and inserts sequences of gates in circuits so as to minimize expected noise.
arXiv Detail & Related papers (2020-05-21T17:47:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.