論文の概要: Earnings Prediction Using Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2311.10756v1
- Date: Fri, 10 Nov 2023 13:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 00:48:31.431474
- Title: Earnings Prediction Using Recurrent Neural Networks
- Title(参考訳): リカレントニューラルネットワークによる収益予測
- Authors: Moritz Scherrmann, Ralf Elsas
- Abstract要約: この研究は、40年間の財務データを用いて、将来の企業利益を予測するニューラルネットワークを開発する。
アナリストのカバレッジギャップに対処し、潜在的に隠れた洞察を明らかにする。
会計年度末と四半期決算予測の両方を作成できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Firm disclosures about future prospects are crucial for corporate valuation
and compliance with global regulations, such as the EU's MAR and the US's SEC
Rule 10b-5 and RegFD. To comply with disclosure obligations, issuers must
identify nonpublic information with potential material impact on security
prices as only new, relevant and unexpected information materially affects
prices in efficient markets. Financial analysts, assumed to represent public
knowledge on firms' earnings prospects, face limitations in offering
comprehensive coverage and unbiased estimates. This study develops a neural
network to forecast future firm earnings, using four decades of financial data,
addressing analysts' coverage gaps and potentially revealing hidden insights.
The model avoids selectivity and survivorship biases as it allows for missing
data. Furthermore, the model is able to produce both fiscal-year-end and
quarterly earnings predictions. Its performance surpasses benchmark models from
the academic literature by a wide margin and outperforms analysts' forecasts
for fiscal-year-end earnings predictions.
- Abstract(参考訳): 将来の見通しに関する企業情報開示は、EUのMARや米国のSECルール10b-5、RegFDといった世界的な規制の企業価値やコンプライアンスに不可欠である。
開示義務を遵守するために、発行者は、セキュリティ価格に潜在的に重大な影響を及ぼす可能性のある非公開情報のみを、効率的市場における価格に重大な影響を及ぼす新規で関連のある予期せぬ情報として特定しなければならない。
金融アナリストは企業の業績見通しに関する公的な知識を表わしており、包括的なカバレッジと偏りのない見積もりを提供する上での限界に直面している。
この研究は、将来の企業利益を予測するニューラルネットワークを開発し、40年間の財務データを使用し、アナリストのカバレッジギャップに対処し、潜在的に隠れた洞察を明らかにする。
このモデルはデータ欠落を可能にするため、選択性や生存バイアスを避ける。
さらに、このモデルは会計年度末と四半期決算の両方を予測できる。
その業績は学術文献のベンチマークモデルを大きく上回り、アナリストの会計年度決算予測を上回った。
関連論文リスト
- Leveraging Fundamental Analysis for Stock Trend Prediction for Profit [0.0]
本稿では,機械学習モデル,Long Short-Term Memory (LSTM), 1次元畳み込みニューラルネットワーク (1D CNN) およびロジスティック回帰 (LR) を用いて,基本解析に基づく株価トレンドの予測を行う。
我々は、2つの予測タスク、すなわち年次株価差(ASPD)と現在の株価と本質的価値(CSPDIV)の差を定式化するために、主要な金融比率とディスクキャッシュフロー(DCF)モデルを採用する。
この結果、LRモデルはCNNおよびLSTMモデルより優れており、ASPDの平均テスト精度は74.66%、DCSPIVは72.85%であることがわかった。
論文 参考訳(メタデータ) (2024-10-04T20:36:19Z) - Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) は、Contrastive Predictive Coding (CPC) に根ざした自己教師型学習手法である。
我々の研究は、株価データの複雑さを深く掘り下げ、さまざまなモデルが、時間と異なるセクターで急速に変化する収益データの関連性をどのように扱うかを評価している。
CETのCPCに関する基盤は、財務データ時代においても、一貫した株価予測を促進する、微妙な理解を可能にする。
論文 参考訳(メタデータ) (2024-09-25T22:09:59Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Predictive AI for SME and Large Enterprise Financial Performance
Management [0.0]
バランスシートと所得計算の標準比率を補完する新しい金融・マクロ経済比率を紹介します。
また、企業パフォーマンスを予測するための教師付き学習モデル(MLレグレッタとニューラルネットワーク)とベイジアンモデルも提供します。
提案した変数は,標準産業比率に比例してモデル精度を向上させることができると結論づける。
論文 参考訳(メタデータ) (2023-09-22T11:04:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Absolute Value Constraint: The Reason for Invalid Performance Evaluation
Results of Neural Network Models for Stock Price Prediction [5.212847826445359]
6つの浅いニューラルネットワークを実装し、株価を予測し、4つの予測誤差尺度を用いて評価します。
その結果、予測誤差値は、株価予測のモデル精度を部分的にのみ反映し、モデル予測株価の方向の変化を反映することができないことが示された。
論文 参考訳(メタデータ) (2021-01-10T06:51:23Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。