論文の概要: Classification Methods Based on Machine Learning for the Analysis of
Fetal Health Data
- arxiv url: http://arxiv.org/abs/2311.10962v1
- Date: Sat, 18 Nov 2023 04:01:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 13:23:08.941230
- Title: Classification Methods Based on Machine Learning for the Analysis of
Fetal Health Data
- Title(参考訳): 胎児健康データ解析のための機械学習に基づく分類法
- Authors: Binod Regmi and Chiranjibi Shah
- Abstract要約: 胎児健康分析のための各種機械学習モデルの分類性能について検討した。
胎児の健康データセット上のTabNetモデルは、94.36%の分類精度を提供する。
- 参考スコア(独自算出の注目度): 1.3597551064547502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The persistent battle to decrease childhood mortality serves as a commonly
employed benchmark for gauging advancements in the field of medicine. Globally,
the under-5 mortality rate stands at approximately 5 million, with a
significant portion of these deaths being avoidable. Given the significance of
this problem, Machine learning-based techniques have emerged as a prominent
tool for assessing fetal health. In this work, we have analyzed the
classification performance of various machine learning models for fetal health
analysis. Classification performance of various machine learning models, such
as support vector machine (SVM), random forest(RF), and attentive interpretable
tabular learning (TabNet) have been assessed on fetal health. Moreover,
dimensionality reduction techniques, such as Principal component analysis (PCA)
and Linear discriminant analysis (LDA) have been implemented to obtain better
classification performance with less number of features. A TabNet model on a
fetal health dataset provides a classification accuracy of 94.36%. In general,
this technology empowers doctors and healthcare experts to achieve precise
fetal health classification and identify the most influential features in the
process.
- Abstract(参考訳): 小児死亡率を下げるための永続的な戦いは、医学分野の進歩を測る指標として一般的に用いられる。
全世界で5歳未満の死亡率はおよそ500万人であり、その大部分が回避可能である。
この問題の重要性から、マシンラーニングベースのテクニックが胎児の健康を評価する重要なツールとして登場した。
本研究では,胎児健康分析のための各種機械学習モデルの分類性能について検討した。
サポートベクターマシン(SVM)、ランダムフォレスト(RF)、注意的解釈可能な表型学習(TabNet)などの各種機械学習モデルの分類性能を胎児の健康上で評価した。
さらに,主成分分析 (PCA) や線形判別分析 (LDA) などの次元性低減技術が実装され,特徴量が少なくて優れた分類性能が得られるようになった。
胎児の健康データセット上のTabNetモデルは、94.36%の分類精度を提供する。
一般的にこの技術は、医師や医療専門家が正確な胎児の健康分類を達成し、その過程で最も影響力のある特徴を特定できるようにする。
関連論文リスト
- Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
本稿では,臨床データを用いた心疾患のリスク予測における機械学習モデルの役割,関連性,効率性を理解し,評価し,分析する。
Support Vector Machine (SVM) は91.51%の精度を示し、予測能力の観点から評価されたモデル間にその優位性を確認している。
論文 参考訳(メタデータ) (2024-10-16T22:32:19Z) - Predictive Modeling for Breast Cancer Classification in the Context of Bangladeshi Patients: A Supervised Machine Learning Approach with Explainable AI [0.0]
5種類の機械学習手法の分類精度,精度,リコール,F-1スコアを評価し,比較した。
XGBoostは97%という最高のモデル精度を達成した。
論文 参考訳(メタデータ) (2024-04-06T17:23:21Z) - A Saliency-based Clustering Framework for Identifying Aberrant
Predictions [49.1574468325115]
本稿では, 異常予測の概念を導入し, 分類誤差の性質が頻度と同じくらい重要であることを強調した。
本稿では,誤分類率の低減と異常予測の識別を両立する,新しい,効率的なトレーニング手法を提案する。
本手法を獣医学の分野である獣医学の分野に応用し, 被曝率は高いが, 人体医学に比べて広く研究されていない。
論文 参考訳(メタデータ) (2023-11-11T01:53:59Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Unveiling the Unborn: Advancing Fetal Health Classification through Machine Learning [0.0]
本研究では,胎児の健康分類のための新しい機械学習手法を提案する。
提案したモデルでは、テストセットで98.31%の精度が得られる。
複数のデータポイントを組み込むことで、我々のモデルはより包括的で信頼性の高い評価を提供する。
論文 参考訳(メタデータ) (2023-09-30T22:02:51Z) - An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction [1.332560004325655]
本研究では,胎児の健康状態を予測するために,Support Vector MachineとExtraTreesのアンサンブルと呼ばれる頑健なアンサンブルモデルを提案する。
提案したETSEモデルは、100%精度、100%リコール、100%F1スコア、99.66%精度で他のモデルより優れていた。
論文 参考訳(メタデータ) (2023-05-26T16:40:44Z) - RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy
Medical Imaging [67.02500668641831]
ノイズの多いデータセットでトレーニングされたディープラーニングモデルは、ノイズタイプに敏感であり、目に見えないサンプルの一般化が少なくなる。
本稿では,複数の情報源からトピックを学習する概念を模倣したロバスト知識蒸留(RoS-KD)フレームワークを提案する。
RoS-KDは、訓練データの重複する部分集合について訓練された複数の教師から知識を蒸留することにより、滑らかで、よく表現された、堅牢な学生多様体を学習する。
論文 参考訳(メタデータ) (2022-10-15T22:32:20Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - RA-GCN: Graph Convolutional Network for Disease Prediction Problems with
Imbalanced Data [47.00510780034136]
クラス不均衡は疾患予測の分野でよく知られた問題である。
本稿では,グラフベースの分類器の性能を高めるために,Re-weighted Adversarial Graph Convolutional Network (RA-GCN)を提案する。
本研究では,ra-gcnの合成および3種類の医療用データセットに対する優越性を示す。
論文 参考訳(メタデータ) (2021-02-27T14:06:27Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - A survey of statistical learning techniques as applied to inexpensive
pediatric Obstructive Sleep Apnea data [3.1373682691616787]
閉塞性睡眠時無呼吸は小学生の1-5%に影響を及ぼす。
スウィフトの診断と治療は、子供の成長と発達にとって重要であるが、症状の多様性と利用可能なデータの複雑さは、これを困難にしている。
探索データ解析のプロセスにおいて,相関ネットワーク,トポロジカルデータ解析からのMapperアルゴリズム,特異値分解を適用した。
論文 参考訳(メタデータ) (2020-02-17T18:15:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。