Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
- URL: http://arxiv.org/abs/2311.11321v3
- Date: Fri, 12 Apr 2024 12:57:40 GMT
- Title: Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
- Authors: Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel,
- Abstract summary: State-of-the-art methods for conditional average treatment effect (CATE) estimation make widespread use of representation learning.
Here, the idea is to reduce the variance of the low-sample CATE estimation by a (potentially constrained) low-dimensional representation.
Low-dimensional representations can lose information about the observed confounders and thus lead to bias, because of which the validity of representation learning for CATE estimation is typically violated.
- Score: 27.385663284378854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art methods for conditional average treatment effect (CATE) estimation make widespread use of representation learning. Here, the idea is to reduce the variance of the low-sample CATE estimation by a (potentially constrained) low-dimensional representation. However, low-dimensional representations can lose information about the observed confounders and thus lead to bias, because of which the validity of representation learning for CATE estimation is typically violated. In this paper, we propose a new, representation-agnostic refutation framework for estimating bounds on the representation-induced confounding bias that comes from dimensionality reduction (or other constraints on the representations) in CATE estimation. First, we establish theoretically under which conditions CATE is non-identifiable given low-dimensional (constrained) representations. Second, as our remedy, we propose a neural refutation framework which performs partial identification of CATE or, equivalently, aims at estimating lower and upper bounds of the representation-induced confounding bias. We demonstrate the effectiveness of our bounds in a series of experiments. In sum, our refutation framework is of direct relevance in practice where the validity of CATE estimation is of importance.
Related papers
- Learning Representations of Instruments for Partial Identification of Treatment Effects [23.811079163083303]
We leverage arbitrary (potentially high-dimensional) instruments to estimate bounds on the conditional average treatment effect (CATE)
We propose a novel approach for partial identification through a mapping of instruments to a discrete representation space.
We derive a two-step procedure that learns tight bounds using a tailored neural partitioning of the latent instrument space.
arXiv Detail & Related papers (2024-10-11T16:48:32Z) - Disentangled Representation Learning with Transmitted Information Bottleneck [57.22757813140418]
We present textbfDisTIB (textbfTransmitted textbfInformation textbfBottleneck for textbfDisd representation learning), a novel objective that navigates the balance between information compression and preservation.
arXiv Detail & Related papers (2023-11-03T03:18:40Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
In this work, we analyze a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain.
We show that recovering the latent Structural Causal Model (SCM) is unnecessary for estimating domain counterfactuals.
We also develop a theoretically grounded practical algorithm that simplifies the modeling process to generative model estimation.
arXiv Detail & Related papers (2023-06-20T04:19:06Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Spectral Representation Learning for Conditional Moment Models [33.34244475589745]
We propose a procedure that automatically learns representations with controlled measures of ill-posedness.
Our method approximates a linear representation defined by the spectral decomposition of a conditional expectation operator.
We show this representation can be efficiently estimated from data, and establish L2 consistency for the resulting estimator.
arXiv Detail & Related papers (2022-10-29T07:48:29Z) - Moderately-Balanced Representation Learning for Treatment Effects with
Orthogonality Information [14.040918087553177]
Estimating the average treatment effect (ATE) from observational data is challenging due to selection bias.
We propose a moderately-balanced representation learning framework.
This framework protects the representation from being over-balanced via multi-task learning.
arXiv Detail & Related papers (2022-09-05T13:20:12Z) - Identifiable Energy-based Representations: An Application to Estimating
Heterogeneous Causal Effects [83.66276516095665]
Conditional average treatment effects (CATEs) allow us to understand the effect heterogeneity across a large population of individuals.
Typical CATE learners assume all confounding variables are measured in order for the CATE to be identifiable.
We propose an energy-based model (EBM) that learns a low-dimensional representation of the variables by employing a noise contrastive loss function.
arXiv Detail & Related papers (2021-08-06T10:39:49Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
We propose a deep dimension reduction approach to learning representations with essential characteristics.
The proposed approach is a nonparametric generalization of the sufficient dimension reduction method.
We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero.
arXiv Detail & Related papers (2020-06-10T14:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.