Meta Prompting for AI Systems
- URL: http://arxiv.org/abs/2311.11482v6
- Date: Sat, 15 Jun 2024 08:19:24 GMT
- Title: Meta Prompting for AI Systems
- Authors: Yifan Zhang, Yang Yuan, Andrew Chi-Chih Yao,
- Abstract summary: We present a comprehensive study of Meta Prompting (MP), an innovative technique reshaping the utilization of language models (LMs) and AI systems in problem-solving and data interaction.
MP emphasizes the structure and syntax of information over traditional content-centric methods.
We show how it effectively deconstructs intricate problems into simpler sub-problems, enhancing token efficiency, and enabling more equitable problem-solving comparisons.
- Score: 12.304069891580658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a comprehensive study of Meta Prompting (MP), an innovative technique reshaping the utilization of language models (LMs) and AI systems in problem-solving and data interaction. Grounded in type theory and category theory, Meta Prompting emphasizes the structure and syntax of information over traditional content-centric methods. The paper explores the formal definitions of Meta Prompting, sets it apart from few-shot prompting, and underlines its effectiveness in various AI applications. A key focus is applying Meta Prompting for complex reasoning tasks, showing how it effectively deconstructs intricate problems into simpler sub-problems, enhancing token efficiency, and enabling more equitable problem-solving comparisons, especially against few-shot prompting methods. Additionally, the paper introduces Meta Prompting for prompting tasks, allowing LLMs to self-generate new prompts in a recursive, metaprogramming-like manner. Empirical experiments, including using a Qwen-72B base language model equipped with meta prompt without instruction-tuning to solve MATH problems with accuracy at 46.3%, which surpass the supervised fine-tuned counterpart trained with extensive mathematical QA instruction pairs and even the initial version of GPT-4, solving GSM8K problems with 83.5% accuracy with zero-shot meta-prompted Qwen-72B base language model, and solving the Game of 24 tasks with a 100% success rate using GPT-4, demonstrate the meta prompting's efficacy in achieving high accuracy and efficiency, showcasing Meta Prompting's transformative impact on AI problem-solving The code is available at https://github.com/meta-prompting/meta-prompting.
Related papers
- MetaKP: On-Demand Keyphrase Generation [52.48698290354449]
We introduce on-demand keyphrase generation, a novel paradigm that requires keyphrases that conform to specific high-level goals or intents.
We present MetaKP, a large-scale benchmark comprising four datasets, 7500 documents, and 3760 goals across news and biomedical domains with human-annotated keyphrases.
We demonstrate the potential of our method to serve as a general NLP infrastructure, exemplified by its application in epidemic event detection from social media.
arXiv Detail & Related papers (2024-06-28T19:02:59Z) - Prompt Learning via Meta-Regularization [18.518214936430816]
We propose a Prompt Meta-Regularization (ProMetaR) to improve the generalizability of prompt learning for vision-language models.
ProMetaR meta-learns both the regularizer and the soft prompts to harness the task-specific knowledge from the downstream tasks and task-agnostic general knowledge from the vision-language models.
arXiv Detail & Related papers (2024-04-01T01:42:23Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation.
We generate high-quality sentence embeddings from Large Language Models without the need for model fine-tuning.
Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.
arXiv Detail & Related papers (2024-02-28T16:35:52Z) - Towards Generalist Prompting for Large Language Models by Mental Models [105.03747314550591]
Large language models (LLMs) have demonstrated impressive performance on many tasks.
To achieve optimal performance, specially designed prompting methods are still needed.
We introduce the concept of generalist prompting, which operates on the design principle of achieving optimal or near-optimal performance.
arXiv Detail & Related papers (2024-02-28T11:29:09Z) - Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding [15.04954445749935]
We introduce meta-prompting, an effective scaffolding technique designed to enhance the functionality of language models (LMs)
By employing high-level instructions, meta-prompting guides the LM to break down complex tasks into smaller, more manageable subtasks.
Central to this process is the LM itself, in its role as the conductor, which ensures seamless communication and effective integration of the outputs.
arXiv Detail & Related papers (2024-01-23T18:22:19Z) - On Meta-Prompting [18.949285430843695]
We call these approaches meta-prompting, or prompting to obtain prompts.
We propose a theoretical framework based on category theory to generalize and describe them.
arXiv Detail & Related papers (2023-12-11T17:46:44Z) - MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text
Classification [65.51149771074944]
MetricPrompt eases verbalizer design difficulty by reformulating few-shot text classification task into text pair relevance estimation task.
We conduct experiments on three widely used text classification datasets across four few-shot settings.
Results show that MetricPrompt outperforms manual verbalizer and other automatic verbalizer design methods across all few-shot settings.
arXiv Detail & Related papers (2023-06-15T06:51:35Z) - Effective Structured Prompting by Meta-Learning and Representative Verbalizer [27.64413828719264]
We propose MetaPrompter for effective structured prompting.
We propose a novel soft verbalizer (RepVerb) which constructs label embedding from feature embeddings directly.
Experimental results demonstrate that MetaPrompter performs better than the recent state-of-the-arts.
arXiv Detail & Related papers (2023-06-01T12:44:33Z) - Error Analysis Prompting Enables Human-Like Translation Evaluation in Large Language Models [57.80514758695275]
Using large language models (LLMs) for assessing the quality of machine translation (MT) achieves state-of-the-art performance at the system level.
We propose a new prompting method called textbftextttError Analysis Prompting (EAPrompt)
This technique emulates the commonly accepted human evaluation framework - Multidimensional Quality Metrics (MQM) and textitproduces explainable and reliable MT evaluations at both the system and segment level.
arXiv Detail & Related papers (2023-03-24T05:05:03Z) - Self-supervised Meta-Prompt Learning with Meta-Gradient Regularization
for Few-shot Generalization [40.45470744120691]
Self-sUpervised meta-Prompt learning framework with MEta-gradient Regularization for few-shot generalization (SUPMER)
This paper proposes a novel Self-sUpervised meta-Prompt learning framework with MEta-gradient Regularization for few-shot generalization (SUPMER)
arXiv Detail & Related papers (2023-03-22T05:04:21Z) - Learning Label Modular Prompts for Text Classification in the Wild [56.66187728534808]
We propose text classification in-the-wild, which introduces different non-stationary training/testing stages.
Decomposing a complex task into modular components can enable robust generalisation under such non-stationary environment.
We propose MODULARPROMPT, a label-modular prompt tuning framework for text classification tasks.
arXiv Detail & Related papers (2022-11-30T16:26:38Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
We propose Test-time Prompt Editing using Reinforcement learning (TEMPERA)
In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge.
Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods.
arXiv Detail & Related papers (2022-11-21T22:38:20Z) - STPrompt: Semantic-guided and Task-driven prompts for Effective Few-shot
Classification [5.6205035780719275]
We propose the STPrompt -Semantic-guided and Task-driven Prompt model.
The proposed model achieves the state-of-the-art performance in five different datasets of few-shot text classification tasks.
arXiv Detail & Related papers (2022-10-29T04:42:30Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - MetaPrompting: Learning to Learn Better Prompts [52.914694884515534]
We propose a new soft prompting method called MetaPrompting, which adopts the well-recognized model-agnostic meta-learning algorithm.
Extensive experiments show MetaPrompting brings significant improvement on four different datasets.
arXiv Detail & Related papers (2022-09-23T09:01:05Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - Set-based Meta-Interpolation for Few-Task Meta-Learning [79.4236527774689]
We propose a novel domain-agnostic task augmentation method, Meta-Interpolation, to densify the meta-training task distribution.
We empirically validate the efficacy of Meta-Interpolation on eight datasets spanning across various domains.
arXiv Detail & Related papers (2022-05-20T06:53:03Z) - IDPG: An Instance-Dependent Prompt Generation Method [58.45110542003139]
Prompt tuning is a new, efficient NLP transfer learning paradigm that adds a task-specific prompt in each input instance during the model training stage.
We propose a conditional prompt generation method to generate prompts for each input instance.
arXiv Detail & Related papers (2022-04-09T15:45:27Z) - OpenPrompt: An Open-source Framework for Prompt-learning [59.17869696803559]
We present OpenPrompt, a unified easy-to-use toolkit to conduct prompt-learning over PLMs.
OpenPrompt is a research-friendly framework that is equipped with efficiency, modularity, and extendibility.
arXiv Detail & Related papers (2021-11-03T03:31:14Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
This paper proposes Comprehensive Instruction (CINS) that exploits PLMs with task-specific instructions.
We design a schema (definition, constraint, prompt) of instructions and their customized realizations for three important downstream tasks in ToD.
Experiments are conducted on these ToD tasks in realistic few-shot learning scenarios with small validation data.
arXiv Detail & Related papers (2021-09-10T03:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.