Data-driven project planning: An integrated network learning and constraint relaxation approach in favor of scheduling
- URL: http://arxiv.org/abs/2311.11542v2
- Date: Sun, 7 Apr 2024 12:22:45 GMT
- Title: Data-driven project planning: An integrated network learning and constraint relaxation approach in favor of scheduling
- Authors: Izack Cohen,
- Abstract summary: A planner in charge of project planning has to select a set of activities to perform, determine their precedence constraints, and schedule them according to temporal project constraints.
We suggest a data-driven project planning approach for classes of projects such as infrastructure building and information systems development projects.
- Score: 0.43512163406552007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our focus is on projects, i.e., business processes, which are emerging as the economic drivers of our times. Differently from day-to-day operational processes that do not require detailed planning, a project requires planning and resource-constrained scheduling for coordinating resources across sub- or related projects and organizations. A planner in charge of project planning has to select a set of activities to perform, determine their precedence constraints, and schedule them according to temporal project constraints. We suggest a data-driven project planning approach for classes of projects such as infrastructure building and information systems development projects. A project network is first learned from historical records. The discovered network relaxes temporal constraints embedded in individual projects, thus uncovering where planning and scheduling flexibility can be exploited for greater benefit. Then, the network, which contains multiple project plan variations, from which one has to be selected, is enriched by identifying decision rules and frequent paths. The planner can rely on the project network for: 1) decoding a project variation such that it forms a new project plan, and 2) applying resource-constrained project scheduling procedures to determine the project's schedule and resource allocation. Using two real-world project datasets, we show that the suggested approach may provide the planner with significant flexibility (up to a 26% reduction of the critical path of a real project) to adjust the project plan and schedule. We believe that the proposed approach can play an important part in supporting decision making towards automated data-driven project planning.
Related papers
- Design of mechanisms for ensuring the execution of tasks in project planning [0.0]
The paper reports an analysis of aspects of the project planning stage.
It takes into account restrictions on financial costs and duration of project implementation.
Models of the task of constructing a hierarchy of tasks and other tasks that take place at the stage of project planning were constructed.
arXiv Detail & Related papers (2025-01-02T13:47:20Z) - Hindsight Planner: A Closed-Loop Few-Shot Planner for Embodied Instruction Following [62.10809033451526]
This work focuses on building a task planner for Embodied Instruction Following (EIF) using Large Language Models (LLMs)
We frame the task as a Partially Observable Markov Decision Process (POMDP) and aim to develop a robust planner under a few-shot assumption.
Our experiments on the ALFRED dataset indicate that our planner achieves competitive performance under a few-shot assumption.
arXiv Detail & Related papers (2024-12-27T10:05:45Z) - Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in Instructional Videos [48.15438373870542]
VidAssist is an integrated framework designed for zero/few-shot goal-oriented planning in instructional videos.
It employs a breadth-first search algorithm for optimal plan generation.
Experiments demonstrate that VidAssist offers a unified framework for different goal-oriented planning setups.
arXiv Detail & Related papers (2024-09-30T17:57:28Z) - LASP: Surveying the State-of-the-Art in Large Language Model-Assisted AI Planning [7.36760703426119]
This survey aims to highlight the existing challenges in planning with language models.
It focuses on key areas such as embodied environments, optimal scheduling, competitive and cooperative games, task decomposition, reasoning, and planning.
arXiv Detail & Related papers (2024-09-03T11:39:52Z) - Open Grounded Planning: Challenges and Benchmark Construction [44.86307213996181]
We propose a new planning task--open grounded planning.
The primary objective of open grounded planning is to ask the model to generate an executable plan based on a variable action set.
Then we test current state-of-the-art LLMs along with five planning approaches, revealing that existing LLMs and methods still struggle to address the challenges posed by grounded planning in open domains.
arXiv Detail & Related papers (2024-06-05T03:46:52Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - A Planning Ontology to Represent and Exploit Planning Knowledge for Performance Efficiency [6.87593454486392]
We consider the problem of automated planning, where the objective is to find a sequence of actions that will move an agent from an initial state of the world to a desired goal state.
We hypothesize that given a large number of available planners and diverse planning domains; they carry essential information that can be leveraged to identify suitable planners and improve their performance for a domain.
arXiv Detail & Related papers (2023-07-25T14:51:07Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z) - Human-instructed Deep Hierarchical Generative Learning for Automated
Urban Planning [57.91323079939641]
We develop a novel human-instructed deep hierarchical generative model to generate optimal urban plans.
The first stage is to label the grids of a target area with latent functionalities to discover functional zones.
The second stage is to perceive the planning requirements to form urban functionality projections.
The third stage is to leverage multi-attentions to model the zone-zone peer dependencies of the functionality projections to generate grid-level land-use configurations.
arXiv Detail & Related papers (2022-12-01T23:06:41Z) - Planning with Learned Object Importance in Large Problem Instances using
Graph Neural Networks [28.488201307961624]
Real-world planning problems often involve hundreds or even thousands of objects.
We propose a graph neural network architecture for predicting object importance in a single inference pass.
Our approach treats the planner and transition model as black boxes, and can be used with any off-the-shelf planner.
arXiv Detail & Related papers (2020-09-11T18:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.