論文の概要: Classification of Instagram fake users using supervised machine learning
algorithms
- arxiv url: http://arxiv.org/abs/2311.12336v1
- Date: Tue, 21 Nov 2023 03:59:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 02:07:56.568140
- Title: Classification of Instagram fake users using supervised machine learning
algorithms
- Title(参考訳): 教師付き機械学習アルゴリズムを用いたInstagramの偽ユーザー分類
- Authors: Vertika Singh, Naman Tolasaria, Patel Meet Alpeshkumar, Shreyash
Bartwal
- Abstract要約: 本稿では,そのような不正直な実体を検知・中和するアプリケーションを提案する。
アプリケーションのユーザ中心の設計により、調査機関のアクセシビリティが保証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In the contemporary era, online social networks have become integral to
social life, revolutionizing the way individuals manage their social
connections. While enhancing accessibility and immediacy, these networks have
concurrently given rise to challenges, notably the proliferation of fraudulent
profiles and online impersonation. This paper proposes an application designed
to detect and neutralize such dishonest entities, with a focus on safeguarding
companies from potential fraud. The user-centric design of the application
ensures accessibility for investigative agencies, particularly the criminal
branch, facilitating navigation of complex social media landscapes and
integration with existing investigative procedures
- Abstract(参考訳): 現代では、オンラインソーシャルネットワークは社会生活に不可欠なものとなり、個人が社会的つながりを管理する方法に革命をもたらした。
アクセシビリティと即時性を高める一方で、これらのネットワークは同時に問題を引き起こし、特に不正なプロファイルの拡散とオンラインの偽装を招いている。
本稿では,このような不正行為を検出・無効化するためのアプリケーションを提案する。
ユーザ中心の設計により、調査機関、特に刑事部門へのアクセシビリティが保証され、複雑なソーシャルメディアの景観のナビゲーションや既存の調査手順との統合が容易になる。
関連論文リスト
- Security in IS and social engineering -- an overview and state of the art [0.6345523830122166]
すべてのプロセスのデジタル化とIoTデバイスのオープン化は、サイバー犯罪という新たな犯罪形態の出現を促している。
こうした攻撃の悪意は、ユーザーがサイバー攻撃のファシリテーターになるという事実にある。
予測方法、弱い信号と外れ値の特定、早期発見、コンピュータ犯罪への迅速な対応が優先課題であり、予防と協力のアプローチが必要である。
論文 参考訳(メタデータ) (2024-06-17T13:25:27Z) - The Illusion of Anonymity: Uncovering the Impact of User Actions on Privacy in Web3 Social Ecosystems [11.501563549824466]
本稿では,Web3ソーシャルプラットフォームにおけるユーザエンゲージメントと,それに伴うプライバシー問題との相違点について検討する。
我々は,人気を模したボグスアカウントの確立を含む,製造活動の広範な現象を精査する。
我々は、社会交流の複雑なウェブをナビゲートする、より厳格なプライバシー対策と倫理的プロトコルの緊急的必要性を強調します。
論文 参考訳(メタデータ) (2024-05-22T06:26:15Z) - Detecting fake accounts through Generative Adversarial Network in online
social media [0.0]
本稿では,ユーザ類似度尺度とGANアルゴリズムを用いて,Twitterデータセット内の偽ユーザアカウントを識別する手法を提案する。
問題の複雑さにもかかわらず、この方法は偽アカウントの分類と検出において80%のAUCレートを達成する。
論文 参考訳(メタデータ) (2022-10-25T10:20:27Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - Having your Privacy Cake and Eating it Too: Platform-supported Auditing
of Social Media Algorithms for Public Interest [70.02478301291264]
ソーシャルメディアプラットフォームは、情報や機会へのアクセスをキュレートするので、公衆の言論を形成する上で重要な役割を果たす。
これまでの研究では、これらのアルゴリズムが偏見や差別的な結果をもたらすことを示すためにブラックボックス法が用いられてきた。
本稿では,提案法の目標を満たすプラットフォーム支援型監査手法を提案する。
論文 参考訳(メタデータ) (2022-07-18T17:32:35Z) - Federated Social Recommendation with Graph Neural Network [69.36135187771929]
本稿では,ソーシャル情報とユーザ・イテムの相互作用を融合させることにより,ソーシャル・レコメンデーションの問題であるソーシャル・リコメンデーションの緩和を提案する。
我々は textbfGraph Neural Network (FeSoG) を用いた textbfFedrated textbfSocial 推薦フレームワークを考案した。
論文 参考訳(メタデータ) (2021-11-21T09:41:39Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - A Social Search Model for Large Scale Social Networks [4.3835068018995935]
検索システムは、ソーシャルなつながりを索引づけ用語として扱い、密接なソーシャルなつながりに偏って意味のある結果を生成する。
ディープニューラルネットワークは、パーソナライズとテキストの関連性に共同で対処する2towerアプローチで、テキストと社会的関連性を扱う。
システムはFacebookにデプロイされ、何十億ものユーザーが自分のつながりから投稿を見つけるのを効率的に支援している。
論文 参考訳(メタデータ) (2020-05-09T02:59:02Z) - DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation [50.08581302050378]
ソーシャルレコメンデーションは、ユーザの未知の嗜好を予測するために、ユーザ間のソーシャルコネクションを活用するために現れている。
ソーシャルレコメンデーションのための神経影響拡散ネットワーク(DiffNet)の予備研究を提案する(Diffnet)。
本稿では,Diffnetの改良アルゴリズムであるDiffNet++を提案する。
論文 参考訳(メタデータ) (2020-01-15T08:45:34Z) - Quantifying the Vulnerabilities of the Online Public Square to Adversarial Manipulation Tactics [43.98568073610101]
ソーシャルメディアモデルを用いて、コンテンツの品質に対するいくつかの敵の操作戦術の影響を定量化する。
ソーシャルメディアの目印である影響力のあるアカウントの存在は、操作するオンラインコミュニティの脆弱性を悪化させる。
これらの知見は、プラットフォームがソーシャルメディアユーザーによる操作のレジリエンスを高めるために使われる可能性があることを示唆している。
論文 参考訳(メタデータ) (2019-07-13T21:12:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。