論文の概要: A Survey on Large Language Models for Personalized and Explainable
Recommendations
- arxiv url: http://arxiv.org/abs/2311.12338v1
- Date: Tue, 21 Nov 2023 04:14:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 02:08:39.022336
- Title: A Survey on Large Language Models for Personalized and Explainable
Recommendations
- Title(参考訳): パーソナライズ・説明可能なレコメンデーションのための大規模言語モデルに関する調査
- Authors: Junyi Chen
- Abstract要約: この調査は、Recommender Systemsが大規模言語モデルからどのような恩恵を受けられるかを分析することを目的としている。
本稿では, 冷間開始問題, 不公平性, バイアス問題であるPEGタスクの課題について述べる。
- 参考スコア(独自算出の注目度): 0.3108011671896571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Recommender Systems(RS) have witnessed a transformative
shift with the advent of Large Language Models(LLMs) in the field of Natural
Language Processing(NLP). These models such as OpenAI's GPT-3.5/4, Llama from
Meta, have demonstrated unprecedented capabilities in understanding and
generating human-like text. This has led to a paradigm shift in the realm of
personalized and explainable recommendations, as LLMs offer a versatile toolset
for processing vast amounts of textual data to enhance user experiences. To
provide a comprehensive understanding of the existing LLM-based recommendation
systems, this survey aims to analyze how RS can benefit from LLM-based
methodologies. Furthermore, we describe major challenges in Personalized
Explanation Generating(PEG) tasks, which are cold-start problems, unfairness
and bias problems in RS.
- Abstract(参考訳): 近年、Recommender Systems(RS)は、自然言語処理(NLP)分野におけるLarge Language Models(LLM)の出現とともに、変革的な変化を目撃している。
OpenAIのGPT-3.5/4、MetaのLlamaのようなこれらのモデルは、人間のようなテキストを理解して生成する前例のない能力を示している。
このことがパーソナライズされ説明可能なレコメンデーションの領域にパラダイムシフトをもたらし、LCMは膨大なテキストデータを処理してユーザエクスペリエンスを向上させる汎用的なツールセットを提供する。
本研究は,既存のLSMベースのレコメンデーションシステムについて,総合的に理解するために,RSがLSMベースの方法論の恩恵を受けるかを分析することを目的とする。
さらに,冷戦開始問題,不公平性,バイアス問題であるパーソナライズド・リレーション・ジェネレーション(peg)タスクにおける大きな課題について述べる。
関連論文リスト
- The Application of Large Language Models in Recommendation Systems [0.0]
大規模言語モデルは、非構造化データソースへのレコメンデーションフレームワークの利用を可能にする強力なツールである。
本稿では,レコメンデーションシステム,特に電子商取引,ソーシャルメディアプラットフォーム,ストリーミングサービス,教育技術におけるLLMの適用について論じる。
論文 参考訳(メタデータ) (2025-01-04T04:02:23Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
MLLM(Multi-modal Large Language Models)は、強力な視覚言語理解機能を提供する。
しかしながら、これらのモデルはトレーニングデータセットから深刻な社会的偏見を継承することが多く、人種や性別といった属性に基づいた不公平な予測につながります。
本稿では,MLLMにおける社会的バイアスの問題に対処する。i)多元的社会的概念(CMSC)を用いた包括的対実的データセットの導入,i)アンチステレオタイプデバイアス戦略(ASD)を提案する。
論文 参考訳(メタデータ) (2024-08-13T02:08:32Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
本調査は,データアノテーションと合成のための大規模言語モデルの有用性に焦点を当てる。
LLMがアノテートできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションと合成にLLMを使用する際の主な課題と制限に関する詳細な議論を含む。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review [2.780460221321639]
本稿では,リフォームレコメンダシステムにおける大規模言語モデルの重要性について述べる。
LLMは、言葉の複雑な解釈において、その適応性を示す、アイテムを推薦するのに非常に熟練している。
トランスフォーメーションの可能性にもかかわらず、入力プロンプトに対する感受性、時には誤解釈、予期せぬ推奨など、課題は続いている。
論文 参考訳(メタデータ) (2024-02-11T00:24:17Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
ChatGPTのような大規模言語モデルは、一般的なタスクを解く際、顕著な能力を示した。
本稿では,レコメンデーションタスクにおけるLLMの活用のための汎用フレームワークを提案し,レコメンデーションタスクとしてのLLMの機能に着目した。
提案手法は,提案手法が推薦結果に与える影響を解析し,提案手法とモデルアーキテクチャ,パラメータスケール,コンテキスト長について検討する。
論文 参考訳(メタデータ) (2024-01-10T08:28:56Z) - Empowering Few-Shot Recommender Systems with Large Language Models --
Enhanced Representations [0.0]
大規模言語モデル(LLM)は、明示的なフィードバックベースのレコメンデータシステムで遭遇する少数のシナリオに対処するための、新たな洞察を提供する。
我々の研究は、LLMがレコメンデーターシステムに関わっていることの多面的側面を深く掘り下げるために、研究者に刺激を与えることができる。
論文 参考訳(メタデータ) (2023-12-21T03:50:09Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。