論文の概要: HiFi-Syn: Hierarchical Granularity Discrimination for High-Fidelity Synthesis of MR Images with Structure Preservation
- arxiv url: http://arxiv.org/abs/2311.12461v2
- Date: Wed, 13 Nov 2024 16:49:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:08:30.254556
- Title: HiFi-Syn: Hierarchical Granularity Discrimination for High-Fidelity Synthesis of MR Images with Structure Preservation
- Title(参考訳): HiFi-Syn:階層的粒度識別による構造保存型MR画像の高忠実合成
- Authors: Ziqi Yu, Botao Zhao, Shengjie Zhang, Xiang Chen, Jianfeng Feng, Tingying Peng, Xiao-Yong Zhang,
- Abstract要約: 医用画像に含まれる様々な意味情報を活用する階層的粒度識別を導入する。
当社の戦略では,脳記憶バンクを用いたピクセルレベルの識別,各脳構造に対する構造レベルの識別,およびハードサンプルに焦点を当てた再重み付け戦略という,3段階の識別粒度を活用している。
我々のモデルは、患者の特定のMRモダリティが利用できないシナリオにおいて、代替の解決策を提供するかもしれない。
- 参考スコア(独自算出の注目度): 11.924728060845595
- License:
- Abstract: Synthesizing medical images while preserving their structural information is crucial in medical research. In such scenarios, the preservation of anatomical content becomes especially important. Although recent advances have been made by incorporating instance-level information to guide translation, these methods overlook the spatial coherence of structural-level representation and the anatomical invariance of content during translation. To address these issues, we introduce hierarchical granularity discrimination, which exploits various levels of semantic information present in medical images. Our strategy utilizes three levels of discrimination granularity: pixel-level discrimination using a Brain Memory Bank, structure-level discrimination on each brain structure with a re-weighting strategy to focus on hard samples, and global-level discrimination to ensure anatomical consistency during translation. The image translation performance of our strategy has been evaluated on three independent datasets (UK Biobank, IXI, and BraTS 2018), and it has outperformed state-of-the-art algorithms. Particularly, our model excels not only in synthesizing normal structures but also in handling abnormal (pathological) structures, such as brain tumors, despite the variations in contrast observed across different imaging modalities due to their pathological characteristics. The diagnostic value of synthesized MR images containing brain tumors has been evaluated by radiologists. This indicates that our model may offer an alternative solution in scenarios where specific MR modalities of patients are unavailable. Extensive experiments further demonstrate the versatility of our method, providing unique insights into medical image translation.
- Abstract(参考訳): 医用画像の合成と構造情報の保存は医学研究において重要である。
このようなシナリオでは、解剖学的内容の保存が特に重要になる。
近年, 翻訳指導にインスタンスレベルの情報を導入することで, 構造レベルの表現の空間的コヒーレンスや翻訳中の内容の解剖的不変性を見落としている。
これらの課題に対処するために,医用画像に現れる様々な意味情報を活用する階層的粒度識別を導入する。
脳記憶バンクを用いたピクセルレベルの識別、ハードサンプルに焦点を当てた再重み付け戦略による各脳構造上の構造レベルの識別、翻訳中の解剖学的整合性を確保するための世界レベルの識別である。
我々の戦略のイメージ翻訳性能は、3つの独立したデータセット(UK Biobank、IXI、BraTS 2018)で評価され、最先端のアルゴリズムよりも優れています。
特に,脳腫瘍などの異常な(病理)構造を扱う上では,画像の異なる形態のコントラストに違いがあるにもかかわらず,本モデルでは,正常な構造を合成するだけでなく,異常な(病理的な)構造を扱う上でも優れている。
脳腫瘍を含むMR画像の診断値は放射線医によって評価されている。
このことから, 特定のMR像が得られないシナリオでは, 本モデルが代替の解決策となる可能性が示唆された。
本手法の汎用性をさらに実証し,医用画像翻訳の独特な知見を提供する。
関連論文リスト
- URCDM: Ultra-Resolution Image Synthesis in Histopathology [4.393805955844748]
Ultra-Resolution Cascaded Diffusion Models (URCDMs) は、すべての病理像を高分解能で合成することができる。
本手法は脳,乳腺,腎臓の組織からなる3つの異なるデータセットを用いて評価した。
URCDMは、訓練された評価器が実際の画像と区別できない様々な解像度の出力を一貫して生成する。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
人間の脳活動から見るイメージを再構築することで、人間とコンピュータのビジョンをBrain-Computer Interfaceを通して橋渡しする。
異なる被験者から得られた機能的磁気共鳴イメージング(fMRI)による画像再構成のための全能モデルであるサイコメトリを考案した。
論文 参考訳(メタデータ) (2024-03-29T07:16:34Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration [22.157402663162877]
本稿では,識別的・コントラスト的・非分散的な深部構造画像表現を学習するためのモダリティ非依存的構造表現学習法を提案する。
本手法は,従来の局所的構造表現や統計的類似度尺度よりも識別性と精度の点で優れている。
論文 参考訳(メタデータ) (2024-02-29T08:01:31Z) - Disentangled Latent Energy-Based Style Translation: An Image-Level Structural MRI Harmonization Framework [20.269574292365107]
我々は、未ペア画像レベルのMRIハーモニゼーションのための新しいフレームワークを開発する。
a)サイト不変画像生成(SIG)、(b)サイト固有スタイル翻訳(SST)、(c)サイト固有MRI合成(SMS)からなる。
遅延空間における画像生成とスタイル翻訳を両立させることにより、DLESTは効率的なスタイル翻訳を実現することができる。
論文 参考訳(メタデータ) (2024-02-10T03:42:37Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
本稿では,ピクセルレベルの情報を高レベルなセマンティクスに明示的にエンコードするための画素復元タスクを提案する。
また,画像理解を支援する強力なツールであるスケール情報の保存についても検討する。
提案されている統合SSLフレームワークは、さまざまなタスクで自己管理されたフレームワークを超越している。
論文 参考訳(メタデータ) (2023-01-02T17:47:27Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
モダリティ内およびモダリティ内アフィンおよび非リグイド画像登録は、臨床画像診断において必須の医用画像解析プロセスである。
本稿では、アフィンおよび非剛性変換を正確にモデル化できる教師なしディープラーニング登録手法を提案する。
本手法は,モーダリティ不変の潜在反感を学習するために,双方向のモーダリティ画像合成を行う。
論文 参考訳(メタデータ) (2022-03-07T12:54:33Z) - MRI to PET Cross-Modality Translation using Globally and Locally Aware
GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer's Disease [1.7499351967216341]
現実像を合成できるGAN(Generative Adversarial Network)は、標準的なデータ拡張手法の代替として大きな可能性を秘めている。
本稿では,グローバルな構造的整合性と局所的細部への忠実さを両立させるマルチパスアーキテクチャにより,グローバルかつ局所的に認識された画像間変換GAN(GLA-GAN)を提案する。
論文 参考訳(メタデータ) (2021-08-04T16:38:33Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。