論文の概要: Decrypting Nonlinearity: Koopman Interpretation and Analysis of Cryptosystems
- arxiv url: http://arxiv.org/abs/2311.12714v2
- Date: Mon, 8 Jul 2024 07:56:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 03:18:28.495449
- Title: Decrypting Nonlinearity: Koopman Interpretation and Analysis of Cryptosystems
- Title(参考訳): 非線形性を復号する:クープマン解釈と暗号系の解析
- Authors: Robin Strässer, Sebastian Schlor, Frank Allgöwer,
- Abstract要約: 本稿では,Diffie-Hellman鍵交換系とRivest-Shamir-Adleman暗号系を非線形力学系として見ることにより,暗号系に対する新たな視点を導入する。
クープマン理論を適用することで、これらの力学系を高次元空間に変換し、解析的に同値な純粋線型系を導出する。
- 参考スコア(独自算出の注目度): 0.05120567378386613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Public-key cryptosystems rely on computationally difficult problems for security, traditionally analyzed using number theory methods. In this paper, we introduce a novel perspective on cryptosystems by viewing the Diffie-Hellman key exchange and the Rivest-Shamir-Adleman cryptosystem as nonlinear dynamical systems. By applying Koopman theory, we transform these dynamical systems into higher-dimensional spaces and analytically derive equivalent purely linear systems. This formulation allows us to reconstruct the secret integers of the cryptosystems through straightforward manipulations, leveraging the tools available for linear systems analysis. Additionally, we establish an upper bound on the minimum lifting dimension required to achieve perfect accuracy. Our results on the required lifting dimension are in line with the intractability of brute-force attacks. To showcase the potential of our approach, we establish connections between our findings and existing results on algorithmic complexity. Furthermore, we extend this methodology to a data-driven context, where the Koopman representation is learned from data samples of the cryptosystems.
- Abstract(参考訳): 公開鍵暗号系は、伝統的に数論法を用いて解析される、計算的に難しいセキュリティ問題に頼っている。
本稿では,Diffie-Hellman鍵交換系とRivest-Shamir-Adleman暗号系を非線形力学系として見ることによって,暗号系に対する新たな視点を紹介する。
クープマン理論を適用することで、これらの力学系を高次元空間に変換し、解析的に同値な純粋線型系を導出する。
この定式化により、線形システム解析に利用可能なツールを活用し、簡単な操作によって暗号システムの秘密整数を再構築することができる。
さらに、完全精度を達成するために必要な最小昇降寸法の上限を確立する。
必要な昇降寸法はブルートフォース攻撃の難易度と一致した。
提案手法の可能性を実証するため,アルゴリズムの複雑さに関する知見と既存の結果との関連性を確立する。
さらに、この方法論をデータ駆動コンテキストに拡張し、暗号システムのデータサンプルからクープマン表現を学習する。
関連論文リスト
- Limits and Powers of Koopman Learning [0.0]
力学系は様々な科学にまたがって複雑で変化する振る舞いを研究する包括的方法を提供する。
クープマン作用素は、線形手法を用いた非線形力学の研究を可能にするため、支配的なアプローチとして現れてきた。
テキスト 動的システムの軌道データからクープマン作用素のスペクトル特性を頑健に学習することは可能か?
論文 参考訳(メタデータ) (2024-07-08T18:24:48Z) - On the use of dynamical systems in cryptography [0.0]
本稿では,その間隔のカオスマップの繰り返しに基づいて,ストリーム暗号のセキュリティを攻撃し,テストするために使用できる新しいアルゴリズムを提案する。
2つ目は、カオスベースの暗号の研究者が暗号プロトコルの設計を始められるように、現代の暗号理論と複雑性理論言語に離散力学系の問題を配置することである。
論文 参考訳(メタデータ) (2024-05-05T19:59:49Z) - Modeling Linear and Non-linear Layers: An MILP Approach Towards Finding Differential and Impossible Differential Propagations [1.5327660568487471]
本稿では,暗号内での差動伝播と不可能伝播を探索する自動ツールを提案する。
このツールは、Lilliput、GIFT64、SKINNY64、Klein、M.IBSの5つの軽量ブロック暗号に適用できる。
論文 参考訳(メタデータ) (2024-05-01T10:48:23Z) - CRYPTO-MINE: Cryptanalysis via Mutual Information Neural Estimation [42.481750913003204]
相互情報(英: Mutual Information、MI)は、暗号システムの効率を評価する尺度である。
機械学習の最近の進歩は、ニューラルネットワークを用いたMIの推定の進歩を可能にしている。
本研究は,暗号分野におけるMI推定の新たな応用について述べる。
論文 参考訳(メタデータ) (2023-09-14T20:30:04Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
古典的AES様対称暗号のための変分量子攻撃アルゴリズム(VQAA)を提案する。
VQAAでは、既知の暗号文は、正規グラフを通して構築されるハミルトンの基底状態として符号化される。
論文 参考訳(メタデータ) (2022-05-07T03:15:15Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Extraction of Discrete Spectra Modes from Video Data Using a Deep
Convolutional Koopman Network [0.0]
クープマン理論の最近の深層学習拡張は、非線形力学系のコンパクトで解釈可能な表現を可能にした。
ディープ・クープマン・ネットワークはコープマン固有関数を学習し、座標変換を捉え、システムダイナミクスを大域的に線形化する。
離散スペクトルを持つ力学系における独立モードの自動同定における深い畳み込みクープマンネットワーク(CKN)の機能を示す。
論文 参考訳(メタデータ) (2020-10-19T06:26:29Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
マルチリニア圧縮学習(MCL)フレームワークは、マルチリニア圧縮センシングと機械学習をエンドツーエンドシステムに統合する。
MCLの背後にある主要なアイデアは、下流学習タスクの信号から重要な特徴を捉えることのできるテンソル部分空間の存在を仮定することである。
本稿では、上記の要件、すなわち、関心の信号が分離可能なテンソル部分空間をどうやって見つけるかという、2つの要件に対処する新しい解決策を提案する。
論文 参考訳(メタデータ) (2020-02-17T19:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。