論文の概要: Development of a Legal Document AI-Chatbot
- arxiv url: http://arxiv.org/abs/2311.12719v1
- Date: Tue, 21 Nov 2023 16:48:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 23:52:25.125384
- Title: Development of a Legal Document AI-Chatbot
- Title(参考訳): 法的文書AI-Chatbotの開発
- Authors: Pranav Nataraj Devaraj, Rakesh Teja P V, Aaryav Gangrade, Manoj Kumar
R
- Abstract要約: 与えられた時間枠内で可能な限り多くの関連する機能を備えた法律文書AIコンポーネントを作成するプロセスに関する洞察が提示される。
各APIコンポーネントの開発については、詳細が述べられている。
AndroidアプリとLangchainクエリ処理コードの構築から、FraskバックエンドとRESTメソッドの両方を統合するまで。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the exponential growth of digital data and the increasing complexity of
legal documentation, there is a pressing need for efficient and intelligent
tools to streamline the handling of legal documents.With the recent
developments in the AI field, especially in chatbots, it cannot be ignored as a
very compelling solution to this problem.An insight into the process of
creating a Legal Documentation AI Chatbot with as many relevant features as
possible within the given time frame is presented.The development of each
component of the chatbot is presented in detail.Each component's workings and
functionality has been discussed.Starting from the build of the Android app and
the Langchain query processing code till the integration of both through a
Flask backend and REST API methods.
- Abstract(参考訳): With the exponential growth of digital data and the increasing complexity of legal documentation, there is a pressing need for efficient and intelligent tools to streamline the handling of legal documents.With the recent developments in the AI field, especially in chatbots, it cannot be ignored as a very compelling solution to this problem.An insight into the process of creating a Legal Documentation AI Chatbot with as many relevant features as possible within the given time frame is presented.The development of each component of the chatbot is presented in detail.Each component's workings and functionality has been discussed.Starting from the build of the Android app and the Langchain query processing code till the integration of both through a Flask backend and REST API methods.
関連論文リスト
- FACTS About Building Retrieval Augmented Generation-based Chatbots [10.437472320378339]
我々は3つのNVIDIAチャットボットを使った経験に基づいて、RAGベースのチャットボットを構築するためのフレームワークを提案する。
FACTSフレームワーク(フレッシュネス、アーキテクチャ、コスト、テスト、セキュリティ)を導入し、15のRAGパイプライン制御ポイントを提示し、大小のLLM間の精度-遅延トレードオフに関する実証的な結果を提供する。
論文 参考訳(メタデータ) (2024-07-10T17:20:59Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - DevBots can co-design APIs [0.0]
DevBotsは、ソフトウェア開発をサポートするためにさまざまなタスクを実行する自動化ツールである。
ソフトウェア開発におけるDevBotsの利用状況について,24の論文を分析した。
論文 参考訳(メタデータ) (2023-12-10T02:29:05Z) - Enhancing API Documentation through BERTopic Modeling and Summarization [0.0]
本稿では、アプリケーションプログラミングインタフェース(API)ドキュメントの解釈の複雑さに焦点を当てる。
公式APIドキュメンテーションは、開発者にとって最も重要な情報ソースであるが、広くなり、ユーザフレンドリ性に欠けることが多い。
我々の新しいアプローチは、トピックモデリングと自然言語処理(NLP)にBERTopicの長所を利用して、APIドキュメントの要約を自動的に生成する。
論文 参考訳(メタデータ) (2023-08-17T15:57:12Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDevはチャットを利用したソフトウェア開発フレームワークで、特別なエージェントがコミュニケーション方法についてガイドされる。
これらのエージェントは、統一された言語ベースのコミュニケーションを通じて、設計、コーディング、テストフェーズに積極的に貢献する。
論文 参考訳(メタデータ) (2023-07-16T02:11:34Z) - Training Conversational Agents with Generative Conversational Networks [74.9941330874663]
我々は、生成会話ネットワークを使用して、自動的にデータを生成し、社会的会話エージェントを訓練する。
自動メトリクスと人的評価器を用いてTopicalChatのアプローチを評価し、10%のシードデータで100%のデータを使用するベースラインに近いパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-15T21:46:39Z) - Building a Legal Dialogue System: Development Process, Challenges and
Opportunities [1.433758865948252]
本稿では,ドメイン固有の会話エージェントの設計において直面する課題に対する重要な原則と解決策について述べる。
ユーザクエリに応答し、連絡先の詳細やケース関連情報を含むユーザ情報を記録する機能を提供する。
論文 参考訳(メタデータ) (2021-09-01T13:35:42Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
本稿では,チャットボットに人間のような意図を持つための革新的なフレームワークを提案する。
我々のフレームワークには、ガイドロボットと人間の役割を担うインターロケータモデルが含まれていた。
本フレームワークを3つの実験的なセットアップを用いて検討し,4つの異なる指標を用いた誘導ロボットの評価を行い,柔軟性と性能の利点を実証した。
論文 参考訳(メタデータ) (2021-03-30T15:24:37Z) - Robust Conversational AI with Grounded Text Generation [77.56950706340767]
GTGは、大規模なTransformerニューラルネットワークをバックボーンとして使用するハイブリッドモデルである。
タスク完了のための対話的信念状態と実世界の知識に基づく応答を生成する。
論文 参考訳(メタデータ) (2020-09-07T23:49:28Z) - Conversations with Search Engines: SERP-based Conversational Response
Generation [77.1381159789032]
我々は、検索エンジンと対話するためのパイプラインを開発するために、適切なデータセット、検索・アズ・ア・会話(SaaC)データセットを作成します。
また、このデータセットを用いて、検索エンジンと対話するための最先端パイプライン(Conversations with Search Engines (CaSE))も開発しています。
CaSEは、サポートされたトークン識別モジュールとプリア・アウェア・ポインタージェネレータを導入することで最先端を向上する。
論文 参考訳(メタデータ) (2020-04-29T13:07:53Z) - A Scalable Chatbot Platform Leveraging Online Community Posts: A
Proof-of-Concept Study [4.623392924486831]
本研究では、擬似会話データとして利用して、処理されたオンラインコミュニティ投稿を用いたデータ駆動型チャットボットの構築の可能性を検証する。
さまざまな目的のためのチャットボットは、コミュニティポストの共通構造を利用したパイプラインを通じて、広範囲に構築できる、と我々は主張する。
論文 参考訳(メタデータ) (2020-01-10T01:45:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。