論文の概要: De-fine: Decomposing and Refining Visual Programs with Auto-Feedback
- arxiv url: http://arxiv.org/abs/2311.12890v2
- Date: Sat, 25 Nov 2023 09:34:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 10:15:34.120245
- Title: De-fine: Decomposing and Refining Visual Programs with Auto-Feedback
- Title(参考訳): de-fine:自動フィードバックによるビジュアルプログラムの分解とリファイン
- Authors: Minghe Gao, Juncheng Li, Hao Fei, Liang Pang, Wei Ji, Guoming Wang,
Wenqiao Zhang, Siliang Tang, Yueting Zhuang
- Abstract要約: De-fineは複雑なタスクを単純なサブタスクに分解し、自動フィードバックによってプログラムを洗練するフレームワークである。
様々な視覚的タスクを対象とした実験により、De-fineはより正確で堅牢なプログラムを作成し、新しいベンチマークをフィールドに設定した。
- 参考スコア(独自算出の注目度): 81.08213203440634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual programming, a modular and generalizable paradigm, integrates
different modules and Python operators to solve various vision-language tasks.
Unlike end-to-end models that need task-specific data, it advances in
performing visual processing and reasoning in an unsupervised manner. Current
visual programming methods generate programs in a single pass for each task
where the ability to evaluate and optimize based on feedback, unfortunately, is
lacking, which consequentially limits their effectiveness for complex,
multi-step problems. Drawing inspiration from benders decomposition, we
introduce De-fine, a general framework that automatically decomposes complex
tasks into simpler subtasks and refines programs through auto-feedback. This
model-agnostic approach can improve logical reasoning performance by
integrating the strengths of multiple models. Our experiments across various
visual tasks show that De-fine creates more accurate and robust programs,
setting new benchmarks in the field.
- Abstract(参考訳): モジュール化可能なパラダイムであるビジュアルプログラミングは、様々なモジュールとPython演算子を統合し、様々な視覚言語タスクを解決する。
タスク固有のデータを必要とするエンドツーエンドモデルとは異なり、教師なしの方法で視覚処理と推論を行う。
現在のビジュアルプログラミング手法では,フィードバックに基づいて評価と最適化を行う能力が不足しているタスク毎に,ひとつのパスでプログラムを生成する。
複雑なタスクを自動的に単純なサブタスクに分解し、自動フィードバックによってプログラムを洗練する一般的なフレームワークであるde-fineを紹介する。
このモデルに依存しないアプローチは、複数のモデルの強みを統合することで論理的推論性能を向上させることができる。
様々なビジュアルタスクで実験した結果、de-fineはより正確で堅牢なプログラムを作成し、フィールドに新しいベンチマークを設定しました。
関連論文リスト
- VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use [74.39058448757645]
視覚言語モデル(VLM)を強化するエージェントフレームワークであるVipActを提案する。
VipActは、タスク要求の分析、計画、調整を管理するオーケストレータエージェントと、特定のタスクを処理する専門エージェントで構成される。
様々な視覚認知タスクを特徴とするベンチマーク上でのVipActの評価を行い,実験結果から大幅な性能向上が得られた。
論文 参考訳(メタデータ) (2024-10-21T18:10:26Z) - InsightSee: Advancing Multi-agent Vision-Language Models for Enhanced Visual Understanding [12.082379948480257]
本稿では,複雑な視覚理解シナリオを扱う上で,視覚言語モデルの能力を高めるためのマルチエージェントフレームワークであるInsightSeeを提案する。
このフレームワークは、視覚情報解釈のプロセスを洗練するために統合される記述エージェントと、2つの推論エージェントと決定エージェントとを含む。
このフレームワークは、9つのベンチマークテストのうち6つで最先端のアルゴリズムよりも優れており、マルチモーダル理解が大幅に進歩している。
論文 参考訳(メタデータ) (2024-05-31T13:56:55Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - Modeling Output-Level Task Relatedness in Multi-Task Learning with Feedback Mechanism [7.479892725446205]
マルチタスク学習(MTL)は、異なるレベルで情報を共有することで複数のタスクを同時に学習するパラダイムである。
異なるタスクが相互に影響のある相関出力を生成する可能性があることを考慮し、後続情報をモデルに導入する。
我々は,MTLモデルにフィードバック機構を組み込むことで,あるタスクの出力が他のタスクの隠れ機能として機能する。
論文 参考訳(メタデータ) (2024-04-01T03:27:34Z) - CogCoM: Train Large Vision-Language Models Diving into Details through Chain of Manipulations [61.21923643289266]
カオス・オブ・マニピュレーション(Chain of Manipulations)は、視覚言語モデル(Vision-Language Models)が、エビデンスを段階的に解決するメカニズムである。
トレーニング後、モデルは外部ツールを介さずに、本質的な操作(グラウンド、ズームインなど)を積極的に行うことで、様々な視覚的問題を解決することができる。
トレーニングされたモデルである textbfCogCoM は、4つのカテゴリの9つのベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-02-06T18:43:48Z) - SeMAIL: Eliminating Distractors in Visual Imitation via Separated Models [22.472167814814448]
本稿では,SeMAIL(Separated Model-based Adversarial Imitation Learning)というモデルベース模倣学習アルゴリズムを提案する。
本手法は, 様々な視覚的制御タスクにおいて, 複雑な観察と, 専門的な観察から異なる背景を持つより困難なタスクにおいて, ほぼ専門的な性能を実現する。
論文 参考訳(メタデータ) (2023-06-19T04:33:44Z) - Visual Programming: Compositional visual reasoning without training [24.729624386851388]
VISPROGは、複雑で構成的な視覚課題を解決するための神経象徴的なアプローチである。
大規模な言語モデルのコンテキスト内学習機能を使って、ピソンのようなモジュラープログラムを生成する。
論文 参考訳(メタデータ) (2022-11-18T18:50:09Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
我々はUni-Perceiverという汎用認識アーキテクチャを提案する。
様々なモダリティやタスクを、統一されたモデリングと共有パラメータで処理します。
その結果、チューニングなしで事前学習したモデルは、新しいタスクでも合理的なパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2021-12-02T18:59:50Z) - How to Design Sample and Computationally Efficient VQA Models [53.65668097847456]
テキストを確率的プログラムとして表現し,イメージをオブジェクトレベルのシーングラフとして表現することが,これらのデシラタを最も満足していることが判明した。
既存のモデルを拡張して,これらのソフトプログラムとシーングラフを活用して,エンドツーエンドで質問応答ペアをトレーニングします。
論文 参考訳(メタデータ) (2021-03-22T01:48:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。