論文の概要: Attribution and Alignment: Effects of Local Context Repetition on
Utterance Production and Comprehension in Dialogue
- arxiv url: http://arxiv.org/abs/2311.13061v1
- Date: Tue, 21 Nov 2023 23:50:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 16:44:46.239522
- Title: Attribution and Alignment: Effects of Local Context Repetition on
Utterance Production and Comprehension in Dialogue
- Title(参考訳): アトリビューションとアライメント:対話における発話生成と理解に及ぼす局所的文脈反復の影響
- Authors: Aron Molnar, Jaap Jumelet, Mario Giulianelli, Arabella Sinclair
- Abstract要約: 繰り返しは通常、言語モデル世代を評価する際に罰せられる。
人間はローカルとパートナーの特定の繰り返しを使用し、それらは人間のユーザーによって好まれ、対話におけるコミュニケーションをより成功させる。
本研究では, (a) 言語モデルが対話における人間的な繰り返しのレベルを生成するかどうか, (b) 理解中に使用する語彙再使用に関連する処理機構について検討する。
- 参考スコア(独自算出の注目度): 6.886248462185439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models are often used as the backbone of modern dialogue systems.
These models are pre-trained on large amounts of written fluent language.
Repetition is typically penalised when evaluating language model generations.
However, it is a key component of dialogue. Humans use local and partner
specific repetitions; these are preferred by human users and lead to more
successful communication in dialogue. In this study, we evaluate (a) whether
language models produce human-like levels of repetition in dialogue, and (b)
what are the processing mechanisms related to lexical re-use they use during
comprehension. We believe that such joint analysis of model production and
comprehension behaviour can inform the development of cognitively inspired
dialogue generation systems.
- Abstract(参考訳): 言語モデルは現代の対話システムのバックボーンとしてよく用いられる。
これらのモデルは、大量のフロート言語で事前訓練されている。
繰り返しは通常、言語モデル世代を評価する際に罰せられる。
しかし、これは対話の重要な要素である。
人間はローカルとパートナーの特定の繰り返しを使用し、それらは人間のユーザーによって好まれ、対話におけるコミュニケーションをより成功させる。
本研究では,その評価を行う。
(a)言語モデルが対話における人間に似た反復レベルを生成するか否か、
(b)理解中に使用する語彙の再使用に関連する処理機構は何か。
このようなモデル生成と理解行動の統合分析は、認知にインスパイアされた対話生成システムの開発に寄与すると考えている。
関連論文リスト
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
GPT-4oのようなシステムで実証された音声対話モデルの最近の進歩は、音声領域において大きな注目を集めている。
これらの高度な音声対話モデルは、音声、音楽、その他の音声関連の特徴を理解するだけでなく、音声のスタイリスティックな特徴や音節的な特徴も捉える。
音声対話システムの進歩にもかかわらず、これらのシステムを体系的に組織化し分析する包括的調査が欠如している。
論文 参考訳(メタデータ) (2024-11-15T04:16:45Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chatは、知識グラフ上のポインタネットワークと、事前訓練された言語モデルを組み合わせた、ポインタネットワーク誘導生成対話モデルである。
PK-Chatが対話で生成した単語は、単語リストの予測と外部知識グラフ知識の直接予測から導かれる。
PK-Chatに基づく対話システムは、地球科学の学術シナリオ向けに構築されている。
論文 参考訳(メタデータ) (2023-04-02T18:23:13Z) - Building a Personalized Dialogue System with Prompt-Tuning [5.942602139622984]
与えられた文字設定(ペルソナ)に基づいて応答する対話システムを構築する。
本稿では,事前学習された大規模言語モデルに対して,学習コストの低いプロンプトチューニングを利用する手法を提案する。
論文 参考訳(メタデータ) (2022-06-11T02:21:11Z) - Response Generation with Context-Aware Prompt Learning [19.340498579331555]
本稿では,対話生成問題を素早い学習課題とする,事前学習型対話モデリングのための新しい手法を提案する。
限られた対話データを微調整する代わりに、我々のアプローチであるDialogPromptは、対話コンテキストに最適化された連続的なプロンプト埋め込みを学習する。
提案手法は,微調整ベースラインと汎用的なプロンプト学習法を著しく上回っている。
論文 参考訳(メタデータ) (2021-11-04T05:40:13Z) - A Review of Dialogue Systems: From Trained Monkeys to Stochastic Parrots [0.0]
人工知能をデプロイして、人間と会話できる自動対話エージェントを構築することを目指している。
本稿では,長年にわたって対話システムを構築するために開発された手法について概説する。
論文 参考訳(メタデータ) (2021-11-02T08:07:55Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
対話モデリングの観点から,従来の手法を検討した。
対話理解タスクで広く使用されている対話モデリングの3つの典型的なパターンについて議論します。
論文 参考訳(メタデータ) (2021-03-04T15:50:17Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
対話履歴を効果的に活用する方法は、マルチターン対話生成において重要な問題である。
これまでの研究は通常、歴史をモデル化するために様々なニューラルネットワークアーキテクチャを使用していた。
本稿では,ランキング拡張対話生成フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-13T01:49:56Z) - Neural Generation of Dialogue Response Timings [13.611050992168506]
音声応答オフセットの分布をシミュレートするニューラルモデルを提案する。
モデルは、インクリメンタルな音声対話システムのパイプラインに統合されるように設計されている。
人間の聴取者は、対話の文脈に基づいて、特定の応答タイミングをより自然なものとみなす。
論文 参考訳(メタデータ) (2020-05-18T23:00:57Z) - Knowledge Injection into Dialogue Generation via Language Models [85.65843021510521]
InjKは対話生成モデルに知識を注入するための2段階のアプローチである。
まず、大規模言語モデルをトレーニングし、テキスト知識としてクエリする。
次に、対話生成モデルを作成し、テキスト知識と対応する応答を逐次生成する。
論文 参考訳(メタデータ) (2020-04-30T07:31:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。