論文の概要: Learning to Complement with Multiple Humans
- arxiv url: http://arxiv.org/abs/2311.13172v2
- Date: Wed, 1 May 2024 15:27:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 20:11:13.572722
- Title: Learning to Complement with Multiple Humans
- Title(参考訳): 複数の人間で補うことを学ぶ
- Authors: Zheng Zhang, Cuong Nguyen, Kevin Wells, Thanh-Toan Do, Gustavo Carneiro,
- Abstract要約: 本稿では,LECOMH(Learning to Complement with Multiple Humans)アプローチを紹介する。
LECOMHは、クリーンなラベルに依存することなくノイズの多いラベルから学習し、協調的精度を最大化するように設計されている。
HAI-CC法を評価するために, トレーニングとテストの両方のための複数のノイズラベルを特徴とする新しいベンチマークを提案する。
- 参考スコア(独自算出の注目度): 21.247853435529446
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Real-world image classification tasks tend to be complex, where expert labellers are sometimes unsure about the classes present in the images, leading to the issue of learning with noisy labels (LNL). The ill-posedness of the LNL task requires the adoption of strong assumptions or the use of multiple noisy labels per training image, resulting in accurate models that work well in isolation but fail to optimise human-AI collaborative classification (HAI-CC). Unlike such LNL methods, HAI-CC aims to leverage the synergies between human expertise and AI capabilities but requires clean training labels, limiting its real-world applicability. This paper addresses this gap by introducing the innovative Learning to Complement with Multiple Humans (LECOMH) approach. LECOMH is designed to learn from noisy labels without depending on clean labels, simultaneously maximising collaborative accuracy while minimising the cost of human collaboration, measured by the number of human expert annotations required per image. Additionally, new benchmarks featuring multiple noisy labels for both training and testing are proposed to evaluate HAI-CC methods. Through quantitative comparisons on these benchmarks, LECOMH consistently outperforms competitive HAI-CC approaches, human labellers, multi-rater learning, and noisy-label learning methods across various datasets, offering a promising solution for addressing real-world image classification challenges.
- Abstract(参考訳): 実世界の画像分類タスクは複雑になりがちで、専門家のラベルラが画像に存在するクラスについて不確実な場合があり、ノイズラベル(LNL)による学習が問題となる。
LNLタスクの不適切さは、強い仮定の採用やトレーニングイメージ毎の複数のノイズラベルの使用を必要とするため、正確なモデルは独立して機能するが、人間とAIの協調分類(HAI-CC)の最適化に失敗する。
これらのLNLメソッドとは異なり、HAI-CCは人間の専門知識とAI能力の相乗効果を活用することを目的としている。
本稿では,LECOMH(Learning to Complement with Multiple Humans)アプローチを導入することで,このギャップに対処する。
LECOMHは、クリーンなラベルに依存することなく、ノイズの多いラベルから学習するように設計されている。
さらに,HAI-CC法を評価するために,トレーニングとテストの両方のための複数のノイズラベルを特徴とする新しいベンチマークを提案する。
これらのベンチマークの定量的比較を通じて、LECOMHは、競合するHAI-CCアプローチ、ヒューマンラベル、マルチラタラーニング、およびノイズの多いラベル学習手法をさまざまなデータセットで一貫して上回り、現実のイメージ分類問題に対処するための有望なソリューションを提供する。
関連論文リスト
- Dynamic Correlation Learning and Regularization for Multi-Label Confidence Calibration [60.95748658638956]
本稿では,多ラベルシナリオにおける信頼度を適切に評価することを目的としたマルチラベル信頼性タスクを提案する。
既存のシングルラベルキャリブレーション手法では、セマンティックな混乱に対処するために欠かせないカテゴリ相関を考慮できない。
本稿では,多粒度セマンティック相関を利用した動的相関学習と正規化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-09T13:26:21Z) - ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification [16.415582577355536]
マルチラベル画像分類は、コンピュータビジョンや医用画像など、多くの領域において難しい課題である。
最近の進歩は、グラフベースとトランスフォーマーベースのメソッドを導入し、パフォーマンスを改善し、ラベルの依存関係をキャプチャしている。
本稿では,これらの課題に対処する新しいフレームワークである確率的多ラベルコントラスト学習(ProbMCL)を提案する。
論文 参考訳(メタデータ) (2024-01-02T22:15:20Z) - Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling [20.982992381790034]
本研究では,不確実性に基づくサンプリングと多様性に基づくサンプリングを統合したポストホック能動学習アルゴリズムを提案する。
提案アルゴリズムは単純で実装が容易なだけでなく,様々なデータセットに対して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-09-28T03:40:30Z) - Exploiting CLIP for Zero-shot HOI Detection Requires Knowledge
Distillation at Multiple Levels [52.50670006414656]
大規模事前学習型視覚言語モデルであるCLIPを,多段階の知識蒸留に利用した。
私たちのモデルをトレーニングするために、CLIPを使用して、グローバルイメージとローカルユニオン領域の両方のHOIスコアを生成する。
このモデルは、完全な教師付きおよび弱い教師付き手法に匹敵する強力な性能を達成する。
論文 参考訳(メタデータ) (2023-09-10T16:27:54Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
部分ラベル学習(Partial Label Learning, PLL)は、弱い教師付き学習の一種で、各トレーニングインスタンスに候補ラベルのセットが割り当てられる。
これはUn Reliable partial Label Learning (UPLL) と呼ばれ、部分ラベルの本質的な信頼性の欠如とあいまいさにより、さらなる複雑さをもたらす。
本研究では,信頼できない部分ラベルに対するモデル強化を支援するために,信頼性に欠けるコントラスト学習を活用するUnreliability-Robust Representation Learning framework(URRL)を提案する。
論文 参考訳(メタデータ) (2023-08-31T13:37:28Z) - Unleashing the Potential of Regularization Strategies in Learning with
Noisy Labels [65.92994348757743]
クロスエントロピー損失を用いた単純なベースラインと、広く使われている正規化戦略を組み合わせることで、最先端の手法より優れていることを示す。
この結果から,正規化戦略の組み合わせは,ノイズラベルを用いた学習の課題に対処する上で,複雑なアルゴリズムよりも効果的であることが示唆された。
論文 参考訳(メタデータ) (2023-07-11T05:58:20Z) - Reinforced Labels: Multi-Agent Deep Reinforcement Learning for
Point-Feature Label Placement [0.0]
データビジュアライゼーションにおける複雑なタスクである配置のラベル付けにReinforcement Learning(RL)を導入する。
提案手法は,多エージェント深層強化学習を用いてラベル配置戦略を学習する。
提案手法により訓練された戦略は,未学習エージェントのランダムな戦略よりも有意に優れていた。
論文 参考訳(メタデータ) (2023-03-02T16:18:00Z) - A Deep Model for Partial Multi-Label Image Classification with Curriculum Based Disambiguation [42.0958430465578]
部分多重ラベル(PML)画像分類問題について検討する。
既存のPMLメソッドは通常、ノイズの多いラベルをフィルタリングするための曖昧な戦略を設計する。
本稿では,PMLの表現能力と識別能力を高めるための深層モデルを提案する。
論文 参考訳(メタデータ) (2022-07-06T02:49:02Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
特徴空間におけるトレーニング例間の類似性を利用した雑音ラベルから学習する手法を提案する。
合成(CIFAR-10, CIFAR-100)とリアル(mini-WebVision, Clothing1M, mini-ImageNet-Red)の両方のノイズを評価するデータセットの評価を行った。
論文 参考訳(メタデータ) (2022-02-04T15:46:27Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
深い予測モデルは、ラベル付きトレーニングデータという形で人間の監督に依存する。
Ask-n-Learnは,各アルゴリズムで推定されたペスドラベルを用いて得られる勾配埋め込みに基づく能動的学習手法である。
論文 参考訳(メタデータ) (2020-09-30T05:19:56Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGRフレームワークは、ディープニューラルネットワークと統計ラベル相関の事前知識を利用する。
まず、統計ラベルの共起に基づいて異なるラベルを相関させる構造化知識グラフを構築する。
次に、ラベルセマンティクスを導入し、学習セマンティクス固有の特徴をガイドする。
グラフノードの相互作用を探索するためにグラフ伝搬ネットワークを利用する。
論文 参考訳(メタデータ) (2020-09-20T15:05:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。