Differentiable Radio Frequency Ray Tracing for Millimeter-Wave Sensing
- URL: http://arxiv.org/abs/2311.13182v1
- Date: Wed, 22 Nov 2023 06:13:39 GMT
- Title: Differentiable Radio Frequency Ray Tracing for Millimeter-Wave Sensing
- Authors: Xingyu Chen, Xinyu Zhang, Qiyue Xia, Xinmin Fang, Chris Xiaoxuan Lu,
Zhengxiong Li
- Abstract summary: We propose DiffSBR, a differentiable framework for mmWave-based 3D reconstruction.
DiffSBR incorporates a differentiable ray tracing engine to simulate radar point clouds from virtual 3D models.
Experiments using various radar hardware validate DiffSBR's capability for fine-grained 3D reconstruction.
- Score: 29.352303349003165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Millimeter wave (mmWave) sensing is an emerging technology with applications
in 3D object characterization and environment mapping. However, realizing
precise 3D reconstruction from sparse mmWave signals remains challenging.
Existing methods rely on data-driven learning, constrained by dataset
availability and difficulty in generalization. We propose DiffSBR, a
differentiable framework for mmWave-based 3D reconstruction. DiffSBR
incorporates a differentiable ray tracing engine to simulate radar point clouds
from virtual 3D models. A gradient-based optimizer refines the model parameters
to minimize the discrepancy between simulated and real point clouds.
Experiments using various radar hardware validate DiffSBR's capability for
fine-grained 3D reconstruction, even for novel objects unseen by the radar
previously. By integrating physics-based simulation with gradient optimization,
DiffSBR transcends the limitations of data-driven approaches and pioneers a new
paradigm for mmWave sensing.
Related papers
- G3R: Generating Rich and Fine-grained mmWave Radar Data from 2D Videos for Generalized Gesture Recognition [19.95047010486547]
We develop a software pipeline that exploits wealthy 2D videos to generate realistic radar data.
It addresses the challenge of simulating diversified and fine-grained reflection properties of user gestures.
We implement and evaluate G3R using 2D videos from public data sources and self-collected real-world radar data.
arXiv Detail & Related papers (2024-04-23T11:22:59Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
We propose a novel approach to improve NeRF's performance with sparse inputs.
We first adopt a voxel-based ray sampling strategy to ensure that the sampled rays intersect with a certain voxel in 3D space.
We then randomly sample additional points within the voxel and apply a Transformer to infer the properties of other points on each ray, which are then incorporated into the volume rendering.
arXiv Detail & Related papers (2024-03-25T15:56:17Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input.
We propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test time.
We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views.
arXiv Detail & Related papers (2023-02-20T17:12:00Z) - mm-Wave Radar Hand Shape Classification Using Deformable Transformers [0.46007387171990594]
A novel, real-time, mm-Wave radar-based static hand shape classification algorithm and implementation are proposed.
The method finds several applications in low cost and privacy sensitive touchless control technology using 60 Ghz radar as the sensor input.
arXiv Detail & Related papers (2022-10-24T09:56:11Z) - mmBody Benchmark: 3D Body Reconstruction Dataset and Analysis for
Millimeter Wave Radar [10.610455816814985]
Millimeter Wave (mmWave) Radar is gaining popularity as it can work in adverse environments like smoke, rain, snow, poor lighting, etc.
Prior work has explored the possibility of reconstructing 3D skeletons or meshes from the noisy and sparse mmWave Radar signals.
This dataset consists of synchronized and calibrated mmWave radar point clouds and RGB(D) images in different scenes and skeleton/mesh annotations for humans in the scenes.
arXiv Detail & Related papers (2022-09-12T08:00:31Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - 3DRIMR: 3D Reconstruction and Imaging via mmWave Radar based on Deep
Learning [9.26903816093995]
mmWave radar has been shown as an effective sensing technique in low visibility, smoke, dusty, and dense fog environment.
We propose 3D Reconstruction and Imaging via mmWave Radar (3DRIMR), a deep learning based architecture that reconstructs 3D shape of an object in dense detailed point cloud format.
Our experiments have demonstrated 3DRIMR's effectiveness in reconstructing 3D objects, and its performance improvement over standard techniques.
arXiv Detail & Related papers (2021-08-05T21:24:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.