Multi-Objective Bayesian Optimization with Active Preference Learning
- URL: http://arxiv.org/abs/2311.13460v1
- Date: Wed, 22 Nov 2023 15:24:36 GMT
- Title: Multi-Objective Bayesian Optimization with Active Preference Learning
- Authors: Ryota Ozaki, Kazuki Ishikawa, Youhei Kanzaki, Shinya Suzuki, Shion
Takeno, Ichiro Takeuchi, Masayuki Karasuyama
- Abstract summary: We propose a Bayesian optimization (BO) approach to identifying the most preferred solution in a multi-objective optimization (MOO) problem.
To minimize the interaction cost with the decision maker (DM), we also propose an active learning strategy for the preference estimation.
- Score: 18.066263838953223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are a lot of real-world black-box optimization problems that need to
optimize multiple criteria simultaneously. However, in a multi-objective
optimization (MOO) problem, identifying the whole Pareto front requires the
prohibitive search cost, while in many practical scenarios, the decision maker
(DM) only needs a specific solution among the set of the Pareto optimal
solutions. We propose a Bayesian optimization (BO) approach to identifying the
most preferred solution in the MOO with expensive objective functions, in which
a Bayesian preference model of the DM is adaptively estimated by an interactive
manner based on the two types of supervisions called the pairwise preference
and improvement request. To explore the most preferred solution, we define an
acquisition function in which the uncertainty both in the objective functions
and the DM preference is incorporated. Further, to minimize the interaction
cost with the DM, we also propose an active learning strategy for the
preference estimation. We empirically demonstrate the effectiveness of our
proposed method through the benchmark function optimization and the
hyper-parameter optimization problems for machine learning models.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - mDPO: Conditional Preference Optimization for Multimodal Large Language Models [52.607764280030196]
Direct preference optimization (DPO) has shown to be an effective method for large language model (LLM) alignment.
Recent works have attempted to apply DPO to multimodal scenarios but have found it challenging to achieve consistent improvement.
We propose mDPO, a multimodal DPO objective that prevents the over-prioritization of language-only preferences by also optimizing image preference.
arXiv Detail & Related papers (2024-06-17T17:59:58Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Data-Efficient Interactive Multi-Objective Optimization Using ParEGO [6.042269506496206]
Multi-objective optimization seeks to identify a set of non-dominated solutions that provide optimal trade-offs among competing objectives.
In practical applications, decision-makers (DMs) will select a single solution that aligns with their preferences to be implemented.
We propose two novel algorithms that efficiently locate the most preferred region of the Pareto front in expensive-to-evaluate problems.
arXiv Detail & Related papers (2024-01-12T15:55:51Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
We propose a human-centered interactive HPO approach tailored towards multi-objective machine learning (ML)
Instead of relying on the user guessing the most suitable indicator for their needs, our approach automatically learns an appropriate indicator.
arXiv Detail & Related papers (2023-09-07T09:22:05Z) - Pareto Set Learning for Expensive Multi-Objective Optimization [5.419608513284392]
Expensive multi-objective optimization problems can be found in many real-world applications.
This paper develops a novel learning-based method to approximate the whole Pareto set for MOBO.
arXiv Detail & Related papers (2022-10-16T09:41:54Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
This paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization.
We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources.
Our methods offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
arXiv Detail & Related papers (2021-12-27T20:55:26Z) - One Step Preference Elicitation in Multi-Objective Bayesian Optimization [0.0]
We consider a multi-objective optimization problem with objective functions that are expensive to evaluate.
We show that the true best solution according to the DM's unknown preferences is unlikely to be among the small set of non-dominated solutions found.
arXiv Detail & Related papers (2021-05-27T16:23:29Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.