論文の概要: Transfer Learning-based Real-time Handgun Detection
- arxiv url: http://arxiv.org/abs/2311.13559v2
- Date: Thu, 23 Nov 2023 19:10:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 12:28:03.796157
- Title: Transfer Learning-based Real-time Handgun Detection
- Title(参考訳): 伝達学習に基づくリアルタイム拳銃検出
- Authors: Youssef Elmir, Sid Ahmed Laouar, Larbi Hamdaoui
- Abstract要約: 本研究では、畳み込みニューラルネットワークと伝達学習を用いて、自動拳銃検出のためのリアルタイムコンピュータビジョンシステムの開発を行う。
提案システムは84.74%の精度を達成し,関連する作業に匹敵する有望な性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional surveillance systems rely on human attention, limiting their
effectiveness. This study employs convolutional neural networks and transfer
learning to develop a real-time computer vision system for automatic handgun
detection. Comprehensive analysis of online handgun detection methods is
conducted, emphasizing reducing false positives and learning time. Transfer
learning is demonstrated as an effective approach. Despite technical
challenges, the proposed system achieves a precision rate of 84.74%,
demonstrating promising performance comparable to related works, enabling
faster learning and accurate automatic handgun detection for enhanced security.
This research advances security measures by reducing human monitoring
dependence, showcasing the potential of transfer learning-based approaches for
efficient and reliable handgun detection.
- Abstract(参考訳): 従来の監視システムは人間の注意に依存し、その効果を制限している。
本研究では,畳み込みニューラルネットワークとトランスファー学習を用いて,拳銃自動検出のためのリアルタイムコンピュータビジョンシステムを開発した。
オンライン拳銃検出手法の包括的分析を行い,偽陽性の低減と学習時間の短縮を強調する。
転校学習は効果的なアプローチとして示される。
技術的課題にもかかわらず、提案システムは84.74%の精度を実現し、関連する作業に匹敵する有望な性能を示し、より高速な学習と精度の高い自動拳銃検出を可能にした。
本研究は, 人体監視依存度を低減し, 効率・信頼性の高い拳銃検出のための伝達学習アプローチの可能性を示す。
関連論文リスト
- Real-Time Weapon Detection Using YOLOv8 for Enhanced Safety [0.0]
このモデルは、様々な種類の銃器とエッジ武器を描いた何千もの画像を含む包括的なデータセットで訓練された。
精度,リコール,F1スコア,平均平均平均精度(mAP)を複数のIoU閾値で比較し,モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-10-23T10:35:51Z) - Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study [4.2751988244805466]
本稿では,ネットワークトラヒックデータから状態マシンを抽出するために,オートマチック学習を用いる。
我々は,産業パートナーのRabbitRun Technologiesが開発した商用ネットワーク侵入検知システムに適用する。
我々の手法は、学習された状態マシンの状態数と遷移を平均67.5%削減する。
論文 参考訳(メタデータ) (2024-05-18T02:10:41Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - A False Sense of Security? Revisiting the State of Machine
Learning-Based Industrial Intrusion Detection [9.924435476552702]
異常に基づく侵入検知は、産業制御システムに対する新規または未知の攻撃を検出することを約束する。
研究は機械学習による自動学習に重点を置いており、検出率は99%以上に達する。
その結果、未知の攻撃を検出できないことが強調され、検出率は3.2%から14.7%に低下した。
論文 参考訳(メタデータ) (2022-05-18T20:17:33Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
オフライン学習を必要とせず、簡単な効果的なオンライン学習手法を提案する。
これは、モデルが以前見たオブジェクトに関する知識を記憶するための、内蔵されたメモリ保持メカニズムを可能にする。
我々は、RT-MDNetにおける多層パーセプトロンと、DiMPにおける畳み込みニューラルネットワークの追跡のためのオンライン学習ファミリーにおける2つのネットワークに基づくアプローチを評価する。
論文 参考訳(メタデータ) (2021-12-28T06:51:18Z) - Continual Learning for Anomaly Detection in Surveillance Videos [36.24563211765782]
本稿では,移動学習と連続学習を用いた監視ビデオのオンライン異常検出手法を提案する。
提案アルゴリズムは,移動学習のためのニューラルネットワークモデルの特徴抽出能力と,統計的検出手法の連続学習能力を利用する。
論文 参考訳(メタデータ) (2020-04-15T16:41:20Z) - Any-Shot Sequential Anomaly Detection in Surveillance Videos [36.24563211765782]
本稿では,トランスファーラーニングとノンショットラーニングを用いた監視ビデオのオンライン異常検出手法を提案する。
提案アルゴリズムは,トランスファー学習のためのニューラルネットワークモデルの特徴抽出能力と,統計的検出手法のノンショット学習能力を利用する。
論文 参考訳(メタデータ) (2020-04-05T02:15:45Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。