論文の概要: Labeling Neural Representations with Inverse Recognition
- arxiv url: http://arxiv.org/abs/2311.13594v1
- Date: Wed, 22 Nov 2023 18:55:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 14:02:25.061559
- Title: Labeling Neural Representations with Inverse Recognition
- Title(参考訳): 逆認識による神経表現のラベリング
- Authors: Kirill Bykov, Laura Kopf, Shinichi Nakajima, Marius Kloft, Marina
M.-C. H\"ohne
- Abstract要約: 学習した表現と人間の理解可能な概念を結びつけるためのスケーラブルなアプローチを提案する。
Inverse Recognition (INVERT)は多様な種類のニューロンを処理でき、計算量が少なく、セグメンテーションマスクの可用性に依存しない。
本稿では,様々なシナリオにおけるINVERTの適用性を示す。
- 参考スコア(独自算出の注目度): 25.867702786273586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) demonstrated remarkable capabilities in learning
complex hierarchical data representations, but the nature of these
representations remains largely unknown. Existing global explainability
methods, such as Network Dissection, face limitations such as reliance on
segmentation masks, lack of statistical significance testing, and high
computational demands. We propose Inverse Recognition (INVERT), a scalable
approach for connecting learned representations with human-understandable
concepts by leveraging their capacity to discriminate between these concepts.
In contrast to prior work, INVERT is capable of handling diverse types of
neurons, exhibits less computational complexity, and does not rely on the
availability of segmentation masks. Moreover, INVERT provides an interpretable
metric assessing the alignment between the representation and its corresponding
explanation and delivering a measure of statistical significance, emphasizing
its utility and credibility. We demonstrate the applicability of INVERT in
various scenarios, including the identification of representations affected by
spurious correlations, and the interpretation of the hierarchical structure of
decision-making within the models.
- Abstract(参考訳): ディープニューラルネットワーク(dnn)は、複雑な階層的データ表現を学習する顕著な能力を示したが、これらの表現の性質はほとんど不明である。
ネットワーク分割のような既存のグローバル説明可能性法は、セグメンテーションマスクへの依存、統計学的意義試験の欠如、高い計算要求といった制限に直面している。
Inverse Recognition(INVERT)は,これらの概念を識別する能力を活用して,学習した表現と人間の理解可能な概念を結合するスケーラブルな手法である。
以前の研究とは対照的に、INVERTは多様な種類のニューロンを処理でき、計算の複雑さが小さく、セグメンテーションマスクの可用性に依存しない。
さらに、INVERTは、表現とその対応する説明との整合性を評価し、その有用性と信頼性を強調する統計的意義の尺度を提供する解釈可能な指標を提供する。
本研究では,スプリアス相関の影響を受ける表現の同定,モデル内の意思決定の階層構造解釈など,様々なシナリオにおける逆解析の適用性を示す。
関連論文リスト
- Learning local discrete features in explainable-by-design convolutional neural networks [0.0]
本稿では,側方抑制機構に基づくCNN(Design-by-Design Convolutional Neural Network)を提案する。
このモデルは、残留または高密度のスキップ接続を持つ高精度CNNである予測器で構成されている。
観測を収集し,直接確率を計算することにより,隣接するレベルのモチーフ間の因果関係を説明することができる。
論文 参考訳(メタデータ) (2024-10-31T18:39:41Z) - CLIP-MUSED: CLIP-Guided Multi-Subject Visual Neural Information Semantic
Decoding [14.484475792279671]
CLIP-Guided Multi-sUbject Visual Neural Information Semantic Decoding (CLIP-MUSED)法を提案する。
提案手法は,グローバルなニューラル表現を効果的にモデル化するトランスフォーマーベースの特徴抽出器から構成される。
また、マルチオブジェクトデータの集約を容易にする学習可能な主題固有のトークンも組み込まれている。
論文 参考訳(メタデータ) (2024-02-14T07:41:48Z) - Towards Rigorous Understanding of Neural Networks via
Semantics-preserving Transformations [0.0]
本稿では,Rectifier Neural Networksの正確かつグローバルな検証と説明に対するアプローチを提案する。
我々のアプローチの鍵は、意味論的に等価なTyped Affine Decision Structureの構築を可能にする、これらのネットワークのシンボリック実行である。
論文 参考訳(メタデータ) (2023-01-19T11:35:07Z) - Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks [4.153804257347222]
本稿では、視覚的手がかりから部分全体階層を表現できるフレームワークであるAgglomeratorについて述べる。
本研究では,SmallNORB,MNIST,FashionMNIST,CIFAR-10,CIFAR-100などの共通データセットを用いて評価を行った。
論文 参考訳(メタデータ) (2022-03-07T10:56:13Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Desiderata for Representation Learning: A Causal Perspective [104.3711759578494]
我々は表現学習の因果的視点を採り、非純粋性と効率性(教師なし表現学習)と非教師なし表現学習(教師なし表現学習)を定式化する。
これは、関心のデシダータを満たす程度を計算可能なメトリクスで評価し、単一の観測データセットから不純物や不整合表現を学習する。
論文 参考訳(メタデータ) (2021-09-08T17:33:54Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Making Sense of CNNs: Interpreting Deep Representations & Their
Invariances with INNs [19.398202091883366]
INN に基づくアプローチとして, (i) タスク固有の学習的不変性を, (ii) モデル表現と組み合わさった不変性を, (ii) アクセシブルなセマンティックな概念によって, 可逆的に変換する手法を提案する。
我々の非可逆的アプローチは、その性能を損なうことなく、最先端ネットワークのポストホックな解釈を可能にすることでブラックボックスモデルを理解する能力を大幅に拡張する。
論文 参考訳(メタデータ) (2020-08-04T19:27:46Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。