論文の概要: FinMe: A Performance-Enhanced Large Language Model Trading Agent with
Layered Memory and Character Design
- arxiv url: http://arxiv.org/abs/2311.13743v1
- Date: Thu, 23 Nov 2023 00:24:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 00:57:46.088636
- Title: FinMe: A Performance-Enhanced Large Language Model Trading Agent with
Layered Memory and Character Design
- Title(参考訳): FinMe: 階層記憶と文字設計を備えたパフォーマンス向上した大規模言語モデルトレーディングエージェント
- Authors: Yangyang Yu, Haohang Li, Zhi Chen, Yuechen Jiang, Yang Li, Denghui
Zhang, Rong Liu, Jordan W. Suchow, Khaldoun Khashanah
- Abstract要約: textscFinMeは、ファイナンシャル意思決定のために開発された新しいエージェントフレームワークで、プロファイリング、メモリ、意思決定という3つのコアモジュールを含んでいる。
textscFinMeのメモリモジュールは、人間のトレーダーの認知構造と密接に一致し、堅牢な解釈可能性とリアルタイムチューニングを提供する。
このフレームワークは、エージェントが専門知識を自己開発し、新しい投資方法にアジャイルに反応し、取引決定を継続的に洗練することを可能にする。
- 参考スコア(独自算出の注目度): 11.913409501633616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have exhibited notable
efficacy in question-answering (QA) tasks across diverse domains. Their prowess
in integrating extensive web knowledge has fueled interest in developing LLM
autonomous agents. While LLMs are efficient in decoding human instructions and
deriving solutions by holistically processing historical inputs, transitioning
to purpose-driven agents requires a supplementary rational architecture to
process multi-source information, establish reasoning chains, and prioritize
critical tasks. Addressing this, we introduce \textsc{FinMe}, a novel LLM-based
agent framework devised for financial decision-making, encompassing three core
modules: Profiling, to outline the agent's characteristics; Memory, with
layered processing, to aid the agent in assimilating realistic hierarchical
financial data; and Decision-making, to convert insights gained from memories
into investment decisions. Notably, \textsc{FinMe}'s memory module aligns
closely with the cognitive structure of human traders, offering robust
interpretability and real-time tuning. Its adjustable cognitive span allows for
the retention of critical information beyond human perceptual limits, thereby
enhancing trading outcomes. This framework enables the agent to self-evolve its
professional knowledge, react agilely to new investment cues, and continuously
refine trading decisions in the volatile financial environment. We first
compare \textsc{FinMe} with various algorithmic agents on a scalable real-world
financial dataset, underscoring its leading trading performance in stocks and
funds. We then fine-tuned the agent's perceptual spans to achieve a significant
trading performance. Collectively, \textsc{FinMe} presents a cutting-edge LLM
agent framework for automated trading, boosting cumulative investment returns.
- Abstract(参考訳): 近年のLarge Language Models (LLMs) の進歩は、様々な領域にわたる質問応答(QA)タスクにおいて顕著な効果を示した。
彼らの広範なウェブ知識の統合への取り組みは、LSM自律エージェントの開発への関心を喚起した。
LLMは、人間の指示を復号し、歴史的入力を水平に処理することで解を導出するのに効率的であるが、目的駆動エージェントへの移行には、多元的情報処理、推論連鎖の確立、重要なタスクの優先順位付けなどの補助的合理的なアーキテクチャが必要である。
そこで我々は, LLM をベースとした新たなエージェントフレームワークである \textsc{FinMe} を導入し, エージェントの特徴を概説するためのプロファイリング, 階層化処理によるエージェントの現実的な階層的金融データの同化を支援するメモリ, メモリから得られる洞察を投資決定に変換するための意思決定, という3つの中核モジュールを包含する。
特に、 \textsc{FinMe} のメモリモジュールは人間のトレーダーの認知構造と密接に一致し、堅牢な解釈可能性とリアルタイムチューニングを提供する。
その調整可能な認知スパンにより、人間の知覚限界を超えた重要な情報の保持が可能になり、取引結果が向上する。
このフレームワークにより、エージェントは自身の専門知識を自発的に活用し、新たな投資のヒントにアジャイルに反応し、不安定な金融環境におけるトレーディング決定を継続的に洗練することができる。
まず、さまざまなアルゴリズムエージェントをスケーラブルな現実世界の財務データセットで比較し、株価やファンドにおける主要なトレーディングパフォーマンスを裏付ける。
その後、エージェントの知覚範囲を微調整して、重要な取引パフォーマンスを実現しました。
集合的に、 \textsc{FinMe} は自動取引のための最先端の LLM エージェントフレームワークを提示し、累積投資リターンを高める。
関連論文リスト
- FinVision: A Multi-Agent Framework for Stock Market Prediction [0.0]
本研究では,金融取引タスクに特化して設計されたマルチモーダルマルチエージェントシステムを提案する。
提案手法の重要な特徴はリフレクションモジュールの統合である。
論文 参考訳(メタデータ) (2024-10-29T06:02:28Z) - Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
ポートフォリオ管理とアルファマイニングにおける定量株式投資のための新しい枠組みを提案する。
本稿では,大規模言語モデル(LLM)がマルチモーダル財務データからアルファ因子を抽出する枠組みを提案する。
中国株式市場の実験は、この枠組みが最先端のベースラインを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2024-09-10T07:42:28Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - FinCon: A Synthesized LLM Multi-Agent System with Conceptual Verbal Reinforcement for Enhanced Financial Decision Making [28.375203178500556]
大規模言語モデル(LLM)は、複雑なタスクの実行において顕著な可能性を示し、様々な金融アプリケーションでますます活用されている。
本稿では,多様なFINancialタスクに適した概念的言語強化を備えたLLMベースのマルチエージェントフレームワークであるFinConを紹介する。
FinConのリスクコントロールコンポーネントは、体系的な投資信条を更新するための自己基準機構をエピソード的に開始することで、意思決定の品質を高める。
論文 参考訳(メタデータ) (2024-07-09T05:52:26Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large
Language Model [14.800710112671226]
本稿では,ドメイン固有の知識基盤を効率的に構築し,統合する上での課題に対処する,原則的枠組みを提案する。
内側のループでは、エージェントは知識ベースから引き出すことで応答を洗練し、外側のループでは、これらの応答は現実世界のシナリオでテストされる。
我々はこのフレームワークを、QuantAgentという名のトレーディングシグナルをマイニングするための自律エージェントを通じてインスタンス化する。
論文 参考訳(メタデータ) (2024-02-06T06:47:14Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。