論文の概要: Automate Strategy Finding with LLM in Quant investment
- arxiv url: http://arxiv.org/abs/2409.06289v1
- Date: Tue, 10 Sep 2024 07:42:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:40:09.142488
- Title: Automate Strategy Finding with LLM in Quant investment
- Title(参考訳): 量子投資におけるLCMによるオートメイト戦略
- Authors: Zhizhuo Kou, Holam Yu, Jingshu Peng, Lei Chen,
- Abstract要約: ポートフォリオ管理とアルファマイニングにおける定量株式投資のための新しい枠組みを提案する。
本稿では,大規模言語モデル(LLM)がマルチモーダル財務データからアルファ因子を抽出する枠組みを提案する。
中国株式市場の実験は、この枠組みが最先端のベースラインを大きく上回っていることを示している。
- 参考スコア(独自算出の注目度): 4.46212317245124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant progress in deep learning for financial trading, existing models often face instability and high uncertainty, hindering their practical application. Leveraging advancements in Large Language Models (LLMs) and multi-agent architectures, we propose a novel framework for quantitative stock investment in portfolio management and alpha mining. Our framework addresses these issues by integrating LLMs to generate diversified alphas and employing a multi-agent approach to dynamically evaluate market conditions. This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data, ensuring a comprehensive understanding of market dynamics. The first module extracts predictive signals by integrating numerical data, research papers, and visual charts. The second module uses ensemble learning to construct a diverse pool of trading agents with varying risk preferences, enhancing strategy performance through a broader market analysis. In the third module, a dynamic weight-gating mechanism selects and assigns weights to the most relevant agents based on real-time market conditions, enabling the creation of an adaptive and context-aware composite alpha formula. Extensive experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines across multiple financial metrics. The results underscore the efficacy of combining LLM-generated alphas with a multi-agent architecture to achieve superior trading performance and stability. This work highlights the potential of AI-driven approaches in enhancing quantitative investment strategies and sets a new benchmark for integrating advanced machine learning techniques in financial trading can also be applied on diverse markets.
- Abstract(参考訳): 金融取引におけるディープラーニングの大幅な進歩にもかかわらず、既存のモデルは不安定性と高い不確実性に直面し、その実践的応用を妨げている。
大規模言語モデル(LLM)とマルチエージェントアーキテクチャの進歩を活用し,ポートフォリオ管理とアルファマイニングの定量的ストック投資のための新しい枠組みを提案する。
本フレームワークは,LSMを多元化アルファを生成するために統合し,市場条件を動的に評価するためにマルチエージェントアプローチを採用することで,これらの問題に対処する。
本稿では,大規模言語モデル(LLM)がマルチモーダル財務データからアルファ因子を抽出し,市場ダイナミクスの包括的理解を確保する枠組みを提案する。
最初のモジュールは、数値データ、研究論文、視覚チャートを統合することで予測信号を抽出する。
第2のモジュールは、アンサンブル学習を使用して、さまざまなリスク嗜好を持つさまざまなトレーディングエージェントのプールを構築し、より広範な市場分析を通じて戦略パフォーマンスを向上させる。
第3のモジュールでは、動的重み付け機構がリアルタイム市場条件に基づいて最も関連性の高いエージェントを選択し、割り当て、適応的でコンテキスト対応の複合アルファ式を作成することができる。
中国株式市場での大規模な実験は、この枠組みが複数の金融指標で最先端のベースラインを大幅に上回っていることを示している。
その結果,LLM生成アルファとマルチエージェントアーキテクチャを組み合わせることにより,取引性能と安定性が向上した。
この研究は、量的投資戦略を強化するためのAI駆動アプローチの可能性を強調し、金融取引に先進的な機械学習技術を統合するための新しいベンチマークを、多様な市場にも適用することができる。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - FinVision: A Multi-Agent Framework for Stock Market Prediction [0.0]
本研究では,金融取引タスクに特化して設計されたマルチモーダルマルチエージェントシステムを提案する。
提案手法の重要な特徴はリフレクションモジュールの統合である。
論文 参考訳(メタデータ) (2024-10-29T06:02:28Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
ポートフォリオ全体のリターンと潜在的なリスクの間のトレードオフのバランスをとるために,マルチエージェント強化学習(RL)アプローチを提案する。
得られた実験結果から,提案したMASAフレームワークの有効性が明らかとなった。
論文 参考訳(メタデータ) (2024-02-01T11:31:26Z) - Integrating Stock Features and Global Information via Large Language
Models for Enhanced Stock Return Prediction [5.762650600435391]
本稿では,大規模言語モデルと既存の定量的モデルを統合する上での課題を克服するために,2つのコンポーネントからなる新しいフレームワークを提案する。
我々はランク情報係数とリターンにおいて、特に中国A株市場における株価のみに依存したモデルと比較して、優れたパフォーマンスを示してきた。
論文 参考訳(メタデータ) (2023-10-09T11:34:18Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
強化学習技術は量的取引において顕著な成功を収めた。
既存のRLベースのマーケットメイキング手法のほとんどは、単価レベルの戦略の最適化に重点を置いている。
Imitative Market Maker (IMM) は、準最適信号に基づく専門家の知識と直接的な政策相互作用の両方を活用する新しいRLフレームワークである。
論文 参考訳(メタデータ) (2023-08-17T11:04:09Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
既存のディープラーニング手法はランダムなシードやネットワークルータに敏感であることを示す。
本稿では,成功した取引会社の効果的なボトムアップトレーディング戦略設計ワークフローを模倣する,量的投資のための新しい2段階混成(MoE)フレームワークを提案する。
AlphaMixは4つの財務基準において、最先端のベースラインを大きく上回っている。
論文 参考訳(メタデータ) (2022-06-07T08:58:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。