論文の概要: MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria
- arxiv url: http://arxiv.org/abs/2311.13951v2
- Date: Sat, 27 Apr 2024 04:32:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 00:25:09.545697
- Title: MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria
- Title(参考訳): MLLM-Bench: サンプルごとの基準によるマルチモーダルLCMの評価
- Authors: Wentao Ge, Shunian Chen, Guiming Hardy Chen, Zhihong Chen, Junying Chen, Shuo Yan, Chenghao Zhu, Ziyue Lin, Wenya Xie, Xinyi Zhang, Yichen Chai, Xiaoyu Liu, Dingjie Song, Xidong Wang, Anningzhe Gao, Zhiyi Zhang, Jianquan Li, Xiang Wan, Benyou Wang,
- Abstract要約: 本稿では,強力なMLLMを裁判官として用いたMLLMの新たな評価パラダイムを提案する。
我々は,MLLMをペアワイズ方式でベンチマークし,モデル間での多彩な性能を示す。
我々のベンチマークの妥当性は、人間の評価と88.02%の合意に達したことを示している。
- 参考スコア(独自算出の注目度): 44.401826163314716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal large language models (MLLMs) (e.g., GPT-4V, LLaVA, and Claude-3) have broadened the scope of AI applications. Yet, evaluating their performance presents a significant challenge owing to the inherently subjective nature of tasks that do not yield clear-cut solutions especially for those open-ended queries. Existing automatic evaluation methodologies are mainly limited in evaluating objective queries without considering real-world user experiences, inadequately addressing the nuances of creative and associative multimodal tasks. In our paper, we propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with \textit{per-sample criteria} using potent MLLM as the judge. To validate the feasibility and effectiveness of this paradigm, we design a benchmark, dubbed \textit{MLLM-Bench}, with the evaluation samples across six critical levels following the revised Bloom's Taxonomy with the ethical consideration. We benchmark 21 popular MLLMs in a pairwise-comparison fashion, showing diverse performance across models. Moreover, the validity of our benchmark manifests itself in reaching 88.02\% agreement with human evaluation. We contend that the proposed paradigm explores the potential of MLLMs as effective evaluation tools with the help of per-sample criteria, and that MLLM-Bench will serve as a catalyst for encouraging the development of user-centric MLLMs tailored to real-world applications. Our benchmark data, online leaderboard and submission entry are at https://mllm-bench.llmzoo.com.
- Abstract(参考訳): MLLM (Multimodal large language model) (例えば、GPT-4V、LLaVA、Claude-3) は、AIアプリケーションの範囲を広げている。
しかし、その性能を評価することは、特にオープンなクエリに対して明確な解が得られないタスクの本質的に主観的な性質のため、大きな課題となる。
既存の自動評価手法は主に、現実のユーザエクスペリエンスを考慮せずに客観的なクエリの評価に限られており、創造的かつ連想的なマルチモーダルタスクのニュアンスに不十分に対処している。
本稿では,強力なMLLMを審査対象とするMLLMの評価パラダイムを提案し,MLLMを判定基準として,‘textit{per-sample criteria’を用いて評価する。
本パラダイムの有効性と有効性を検証するため,Bloomの分類基準を改訂し,6つの重要なレベルにまたがる評価サンプルを倫理的考察により検討した。
我々は,MLLMをペアワイズ方式でベンチマークし,モデル間での多彩な性能を示す。
さらに,我々のベンチマークの有効性は,人的評価と88.02\%の一致を示した。
提案手法は,実世界のアプリケーションに適したユーザ中心型MLLMの開発を促進する触媒として,サンプルごとの基準を満たす効果的な評価ツールとして,MLLMの可能性を探求するものである。
ベンチマークデータ、オンラインリーダーボード、エントリはhttps://mllm-bench.llmzoo.com.comにある。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark [41.68821233828375]
本稿では,MLLM-as-a-Judgeと呼ばれる新しいベンチマークを導入し,多様なモダリティにまたがる審査員を支援するMLLMの能力を評価する。
本研究は, MLLMがPair Comparisonにおいて顕著な人間ライクな識別を示す一方で, Scoring EvaluationとBatch Rankingにおいて, 人間の嗜好とは大きく異なることを明らかにした。
論文 参考訳(メタデータ) (2024-02-07T12:28:32Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - State of What Art? A Call for Multi-Prompt LLM Evaluation [28.307860675006545]
我々は650万インスタンスにわたる単発評価により得られた結果の脆さを包括的に分析した。
解析のロバスト性を改善するために,多様なプロンプトのセットを用いてLSMを評価することを提案する。
論文 参考訳(メタデータ) (2023-12-31T22:21:36Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
マルチモーダル言語モデル(MLLM)は、マルチモーダルタスクを実行するために強力なLLMに依存している。
本稿では,MLLM 評価ベンチマーク MME について述べる。
知覚能力と認知能力の両方を合計14のサブタスクで測定する。
論文 参考訳(メタデータ) (2023-06-23T09:22:36Z) - LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain
Conversations with Large Language Models [28.441725610692714]
大規模言語モデル(LLM)を用いたオープンドメイン会話のための多次元自動評価手法を提案する。
単一のモデルコールにおける会話品質の多次元を網羅する統合評価スキーマを利用する単一プロンプトベースの評価手法を設計する。
各種ベンチマークデータセットを用いたLCM-Evalの性能評価を行い,その有効性,効率,適応性について,最先端評価法と比較した。
論文 参考訳(メタデータ) (2023-05-23T05:57:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。