論文の概要: Brain MRI Screening Tool with Federated Learning
- arxiv url: http://arxiv.org/abs/2311.14086v1
- Date: Thu, 23 Nov 2023 16:24:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 23:03:01.195458
- Title: Brain MRI Screening Tool with Federated Learning
- Title(参考訳): フェデレーション学習による脳MRIスクリーニングツール
- Authors: Roman Stoklasa, Ioannis Stathopoulos, Efstratios Karavasilis,
Efstathios Efstathopoulos, Marek Dost\'al, Milo\v{s} Ke\v{r}kovsk\'y, Michal
Kozubek, Luigi Serio
- Abstract要約: 臨床では、重篤な症例であっても、MRIスキャンと放射線科医による診断の間に大きな遅延が見られることが多い。
これは、追加情報を補う自動ソフトウェアツールがあれば回避でき、特定の患者が重篤なケースである可能性があると放射線科医に警告する。
我々は,脳MRI自動スクリーニングツールを提示し,腫瘍様の病態を検出する能力を実証している。
- 参考スコア(独自算出の注目度): 0.5868209939215737
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In clinical practice, we often see significant delays between MRI scans and
the diagnosis made by radiologists, even for severe cases. In some cases, this
may be caused by the lack of additional information and clues, so even the
severe cases need to wait in the queue for diagnosis. This can be avoided if
there is an automatic software tool, which would supplement additional
information, alerting radiologists that the particular patient may be a severe
case.
We are presenting an automatic brain MRI Screening Tool and we are
demonstrating its capabilities for detecting tumor-like pathologies. It is the
first version on the path toward a robust multi-pathology screening solution.
The tool supports Federated Learning, so multiple institutions may contribute
to the model without disclosing their private data.
- Abstract(参考訳): 臨床では,重症例においてもmri検査と放射線科医による診断との間に有意な遅延がみられた。
場合によっては、追加情報や手がかりの欠如によって引き起こされる場合もあるため、重篤なケースでさえ診断待ちに待たなければならない。
これは、追加情報を補う自動ソフトウェアツールがあれば回避でき、特定の患者が重篤なケースである可能性があると放射線科医に警告する。
我々は,脳MRI自動スクリーニングツールを提示し,腫瘍様の病態を検出する能力を実証している。
これは、堅牢なマルチ病理スクリーニングソリューションに向けた最初のバージョンである。
このツールは連合学習をサポートするので、複数の機関がプライベートデータを開示することなくモデルに貢献することができる。
関連論文リスト
- Large-scale Long-tailed Disease Diagnosis on Radiology Images [51.453990034460304]
RadDiagは、様々なモダリティと解剖学にわたる2Dおよび3D入力をサポートする基礎モデルである。
私たちのデータセットであるRP3D-DiagDSは、5,568の障害をカバーする195,010のスキャンで40,936の症例を含む。
論文 参考訳(メタデータ) (2023-12-26T18:20:48Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Online learning for X-ray, CT or MRI [6.211286162347693]
医療画像は、疾患の特定において医療セクターにおいて重要な役割を担っている。
近年,医療専門家は医療画像の評価にコンピュータ支援診断(CAD)システムを採用し始めている。
医学研究はすでに人工知能(AI)と呼ばれる新しい研究の時代に入った。
論文 参考訳(メタデータ) (2023-06-10T17:14:41Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
アルツハイマー病(英語: Alzheimer's disease、AD)は、記憶障害や機能障害を引き起こす進行性脳疾患である。
本研究では,通常の認知,軽度認知障害,ADクラスを分類するために,マルチモーダル・ディープ・ラーニング・アプローチを用いる。
論文 参考訳(メタデータ) (2021-07-19T08:19:34Z) - Self-Supervised Multi-Modal Alignment for Whole Body Medical Imaging [70.52819168140113]
我々は、英国バイオバンクの2万名以上の被験者のデータセットを使用し、全体Dixon法磁気共鳴法(MR)スキャンとデュアルエネルギーX線吸収率法(DXA)スキャンを併用した。
マルチモーダル画像マッチングコントラストフレームワークを導入し、同一対象の異なるモダリティスキャンを高精度にマッチングすることができる。
適応がなければ、この対照的なトレーニングステップで学習した対応が、自動クロスモーダルスキャン登録の実行に利用できることを示す。
論文 参考訳(メタデータ) (2021-07-14T12:35:05Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - Applications of Deep Learning Techniques for Automated Multiple
Sclerosis Detection Using Magnetic Resonance Imaging: A Review [11.505730390079645]
多発性硬化症(Multiple Sclerosis、MS)は、神経系の機能に有害な影響を与える人の視覚、感覚、運動の障害を引き起こす脳疾患である。
近年,MRIを用いたMSの正確な診断のために,人工知能(AI)に基づくコンピュータ支援診断システム(CADS)が提案されている。
本稿では,MRI のニューロイメージング・モダリティを用いた DL 技術を用いた自動MS診断法について概説する。
論文 参考訳(メタデータ) (2021-05-11T09:08:48Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
医学診断アシスタント(MDA)は、疾患を識別するための症状を逐次調査する対話型診断エージェントを構築することを目的としている。
この研究は、因果図を利用して、MDAにおけるこれらの重要な問題に対処しようとする。
本稿では,他の記録から知識を引き出すことにより,非記録的調査に効果的に答える確率に基づく患者シミュレータを提案する。
論文 参考訳(メタデータ) (2020-03-14T02:05:54Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
提案した深層学習モデル ASD-DiagNet は神経型スキャンから ASD の脳スキャンの分類に一貫した精度を示す。
我々の手法はAuto-ASD-Networkと呼ばれ、ディープラーニングとサポートベクトルマシン(SVM)を組み合わせて、ニューロタイプスキャンからASDスキャンを分類する。
論文 参考訳(メタデータ) (2020-03-02T18:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。