Towards xAI: Configuring RNN Weights using Domain Knowledge for MIMO Receive Processing
- URL: http://arxiv.org/abs/2410.07072v1
- Date: Wed, 9 Oct 2024 17:16:11 GMT
- Title: Towards xAI: Configuring RNN Weights using Domain Knowledge for MIMO Receive Processing
- Authors: Shashank Jere, Lizhong Zheng, Karim Said, Lingjia Liu,
- Abstract summary: We advance the field of Explainable AI (xAI) in the physical layer of wireless communications.
We focus on the task of.
MIMO-OFDM receive processing (e.g., symbol detection) using reservoir computing (RC), a framework.
within recurrent neural networks (RNNs)
Our analysis provides a signal processing-based, first-principles understanding of the corresponding operation of RC.
- Score: 19.995241682744567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning is making a profound impact in the physical layer of wireless communications. Despite exhibiting outstanding empirical performance in tasks such as MIMO receive processing, the reasons behind the demonstrated superior performance improvement remain largely unclear. In this work, we advance the field of Explainable AI (xAI) in the physical layer of wireless communications utilizing signal processing principles. Specifically, we focus on the task of MIMO-OFDM receive processing (e.g., symbol detection) using reservoir computing (RC), a framework within recurrent neural networks (RNNs), which outperforms both conventional and other learning-based MIMO detectors. Our analysis provides a signal processing-based, first-principles understanding of the corresponding operation of the RC. Building on this fundamental understanding, we are able to systematically incorporate the domain knowledge of wireless systems (e.g., channel statistics) into the design of the underlying RNN by directly configuring the untrained RNN weights for MIMO-OFDM symbol detection. The introduced RNN weight configuration has been validated through extensive simulations demonstrating significant performance improvements. This establishes a foundation for explainable RC-based architectures in MIMO-OFDM receive processing and provides a roadmap for incorporating domain knowledge into the design of neural networks for NextG systems.
Related papers
- RFI Detection with Spiking Neural Networks [25.08630315149258]
This study introduces first exploratory application of Spiking Neural Networks (SNNs) to an astronomical dataprocessing task, specifically RFI detection.
We adapt the nearest-latentneighbours algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion.
Our approach remains competitive with existing methods in AUROC, AUPRC and F1 scores for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets.
arXiv Detail & Related papers (2023-11-24T06:27:08Z) - Towards Explainable Machine Learning: The Effectiveness of Reservoir
Computing in Wireless Receive Processing [21.843365090029987]
We investigate the specific task of channel equalization by applying a popular learning-based technique known as Reservoir Computing (RC)
RC has shown superior performance compared to conventional methods and other learning-based approaches.
We also show the improvement in receive processing/symbol detection performance with this optimized through simulations.
arXiv Detail & Related papers (2023-10-08T00:44:35Z) - Learning with Multigraph Convolutional Filters [153.20329791008095]
We introduce multigraph convolutional neural networks (MGNNs) as stacked and layered structures where information is processed according to an MSP model.
We also develop a procedure for tractable computation of filter coefficients in the MGNNs and a low cost method to reduce the dimensionality of the information transferred between layers.
arXiv Detail & Related papers (2022-10-28T17:00:50Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Detect to Learn: Structure Learning with Attention and Decision Feedback
for MIMO-OFDM Receive Processing [25.66317464603635]
This paper introduces an online attention-based approach, namely RC-AttStructNet-DF, that can efficiently utilize pilot symbols and be dynamically updated with the detected payload data.
The DF mechanism further enhances detection performance by dynamically tracking the channel changes through detected data symbols.
arXiv Detail & Related papers (2022-08-17T20:01:05Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
This work aims to present a novel method for filtering the speckle noise from Sentinel-1 data by applying Deep Learning (DL) algorithms, based on Convolutional Neural Networks (CNNs)
The obtained results, if compared with the state of the art, show a clear improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
arXiv Detail & Related papers (2021-04-19T14:43:07Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Learning with Knowledge of Structure: A Neural Network-Based Approach
for MIMO-OFDM Detection [33.46816493359834]
Building on a reservoir computing (RC)-based approach towards symbol detection, we introduce a symmetric and decomposed binary decision neural network.
We show that the introduced symmetric neural network can decompose the original $M$-ary detection problem into a series of binary classification tasks.
Numerical evaluations demonstrate that the introduced hybrid RC-binary decision detection framework performs close to maximum likelihood model-based symbol detection methods.
arXiv Detail & Related papers (2020-12-01T18:16:19Z) - A Markovian Model-Driven Deep Learning Framework for Massive MIMO CSI
Feedback [32.442094263278605]
Forward channel state information (CSI) plays a vital role in transmission optimization for massive multiple-input multiple-output (MIMO) communication systems.
Recent studies on the use of recurrent neural networks (RNNs) have demonstrated strong promises, though the cost of computation and memory remains high.
In this work, we exploit channel coherence in time to substantially improve the feedback efficiency.
arXiv Detail & Related papers (2020-09-20T16:26:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.